Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.5 The Gradient and Directional Derivatives - Exercises - Page 803: 69

Answer

Using the definition of differentiability in Section 15.4, we show that: $\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{f\left( {x,y} \right)}}{{\sqrt {{x^2} + {y^2}} }} = 0$

Work Step by Step

We are given $f\left( {0,0} \right) = {f_x}\left( {0,0} \right) = {f_y}\left( {0,0} \right) = 0$. If $f\left( {x,y} \right)$ is differentiable at $\left( {0,0} \right)$, then by definition of differentiability in Section 15.4, $f\left( {x,y} \right)$ is locally linear at $\left( {0,0} \right)$. That is, $f\left( {x,y} \right) = L\left( {x,y} \right) + e\left( {x,y} \right)$, where $L\left( {x,y} \right) = f\left( {0,0} \right) + {f_x}\left( {0,0} \right)x + {f_y}\left( {0,0} \right)y$ and $e\left( {x,y} \right)$ satisfies $\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{e\left( {x,y} \right)}}{{\sqrt {{x^2} + {y^2}} }} = 0$ Next, we evaluate $\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{f\left( {x,y} \right)}}{{\sqrt {{x^2} + {y^2}} }}$ $\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{f\left( {x,y} \right)}}{{\sqrt {{x^2} + {y^2}} }} = \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{L\left( {x,y} \right) + e\left( {x,y} \right)}}{{\sqrt {{x^2} + {y^2}} }}$ $\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{f\left( {x,y} \right)}}{{\sqrt {{x^2} + {y^2}} }} = \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{L\left( {x,y} \right)}}{{\sqrt {{x^2} + {y^2}} }} + \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{e\left( {x,y} \right)}}{{\sqrt {{x^2} + {y^2}} }}$ 1. Consider the first limit on the right-hand side: $\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{L\left( {x,y} \right)}}{{\sqrt {{x^2} + {y^2}} }}$ Since $f\left( {0,0} \right) = {f_x}\left( {0,0} \right) = {f_y}\left( {0,0} \right) = 0{\rm{, so}}L\left( {x,y} \right) = 0$. Thus $\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{L\left( {x,y} \right)}}{{\sqrt {{x^2} + {y^2}} }} = \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{0}{{\sqrt {{x^2} + {y^2}} }} = 0$ 2. Consider the second limit on the right-hand side: $\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{e\left( {x,y} \right)}}{{\sqrt {{x^2} + {y^2}} }}$ Since $f\left( {x,y} \right)$ is locally linear at $\left( {0,0} \right)$, $\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{e\left( {x,y} \right)}}{{\sqrt {{x^2} + {y^2}} }} = 0$ Therefore, $\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{f\left( {x,y} \right)}}{{\sqrt {{x^2} + {y^2}} }} = 0$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.