Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.5 The Gradient and Directional Derivatives - Exercises - Page 803: 68

Answer

(a) Using the limit definition: ${f_x}\left( {0,0} \right) = {f_y}\left( {0,0} \right) = 0$ (b) Using the limit definition of directional derivative, we show that the directional derivative ${D_{\bf{u}}}f\left( {0,0} \right)$ does not exist for any unit vector ${\bf{u}}$ other than ${\bf{i}}$ and ${\bf{j}}$. (c) By Theorem 2 of Section 15.4, $f\left( {x,y} \right)$ is not differentiable at $\left( {0,0} \right)$.

Work Step by Step

(a) We have $f\left( {x,y} \right) = {\left( {xy} \right)^{1/3}}$. Evaluate ${f_x}\left( {0,0} \right)$ using the limit definition: ${f_x}\left( {0,0} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {h,0} \right) - f\left( {0,0} \right)}}{h} = \mathop {\lim }\limits_{h \to 0} \frac{0}{h} = 0$ Evaluate ${f_y}\left( {0,0} \right)$ using the limit definition: ${f_y}\left( {0,0} \right) = \mathop {\lim }\limits_{k \to 0} \frac{{f\left( {0,k} \right) - f\left( {0,0} \right)}}{k} = \mathop {\lim }\limits_{k \to 0} \frac{0}{k} = 0$ Hence, ${f_x}\left( {0,0} \right) = {f_y}\left( {0,0} \right) = 0$. (b) Let ${\bf{u}} = \left( {h,k} \right)$. Using the limit definition of directional derivative, we evaluate ${D_{\bf{u}}}f\left( {0,0} \right) = \mathop {\lim }\limits_{t \to 0} \frac{{f\left( {th,tk} \right) - f\left( {0,0} \right)}}{t}$ ${D_{\bf{u}}}f\left( {0,0} \right) = \mathop {\lim }\limits_{t \to 0} \frac{{{{\left( {{t^2}hk} \right)}^{1/3}}}}{t} = \mathop {\lim }\limits_{t \to 0} \frac{{{{\left( {hk} \right)}^{1/3}}}}{{{t^{1/3}}}} = \infty $ Thus, ${D_{\bf{u}}}f\left( {0,0} \right)$ does not exist for any unit vector ${\bf{u}}$. However, if we evaluate the directional derivative in the direction of ${\bf{i}}$ and ${\bf{j}}$: ${D_{\bf{i}}}f\left( {0,0} \right) = \mathop {\lim }\limits_{t \to 0} \frac{{f\left( {th,0} \right) - f\left( {0,0} \right)}}{t}$ ${\ \ }$ and ${\ \ }$ ${D_{\bf{j}}}f\left( {0,0} \right) = \mathop {\lim }\limits_{t \to 0} \frac{{f\left( {0,tk} \right) - f\left( {0,0} \right)}}{t}$ ${D_{\bf{i}}}f\left( {0,0} \right) = \mathop {\lim }\limits_{t \to 0} \frac{0}{t} = 0$ ${\ \ }$ and ${\ \ }$ ${D_{\bf{j}}}f\left( {0,0} \right) = \mathop {\lim }\limits_{t \to 0} \frac{0}{t} = 0$, we found that the limits exist. Hence, the directional derivative ${D_{\bf{u}}}f\left( {0,0} \right)$ does not exist for any unit vector ${\bf{u}}$ other than ${\bf{i}}$ and ${\bf{j}}$. (c) We evaluate the partial derivatives of $f\left( {x,y} \right) = {\left( {xy} \right)^{1/3}}$: ${f_x}\left( {x,y} \right) = \frac{{{y^{1/3}}}}{{3{x^{2/3}}}}$ ${\ \ }$ and ${\ \ }$ ${f_y}\left( {x,y} \right) = \frac{{{x^{1/3}}}}{{3{y^{2/3}}}}$ We notice that ${f_x}\left( {x,y} \right)$ and ${f_y}\left( {x,y} \right)$ do not exist at $\left( {0,0} \right)$. Hence, by Theorem 2 of Section 15.4, $f\left( {x,y} \right)$ is not differentiable at $\left( {0,0} \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.