Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.2 Limits and Continuity in Several Variables - Exercises - Page 773: 49

Answer

(a) as $\left( {x,y} \right) \to \left( {0,0} \right)$ along any line $y = mx$, the limit $\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} f\left( {x,y} \right) = \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{{x^3}y}}{{{x^6} + 2{y^2}}}=0$ (b) as $\left( {x,y} \right) \to \left( {0,0} \right)$ along the curve $y = {x^3}$, the limit $\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} f\left( {x,y} \right) = \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{{x^3}y}}{{{x^6} + 2{y^2}}}= \frac{1}{3}$ Since $f\left( {x,y} \right)$ does not approach one limit as $\left( {x,y} \right) \to \left( {0,0} \right)$, the limit does not exist.

Work Step by Step

(a) Evaluate the limit along any line $y = mx$: $\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} f\left( {x,y} \right) = \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{{x^3}y}}{{{x^6} + 2{y^2}}}$ $ = \mathop {\lim }\limits_{x \to 0} \frac{{{x^3}\left( {mx} \right)}}{{{x^6} + 2{{\left( {mx} \right)}^2}}}$ $ = \mathop {\lim }\limits_{x \to 0} \frac{m}{{{x^2} + 2\frac{{{m^2}}}{{{x^2}}}}}$ $ = 0$ (b) Evaluate the limit along the curve $y = {x^3}$: $\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} f\left( {x,y} \right) = \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{{x^3}y}}{{{x^6} + 2{y^2}}}$ $ = \mathop {\lim }\limits_{x \to 0} \frac{{{x^3}\left( {{x^3}} \right)}}{{{x^6} + 2{{\left( {{x^3}} \right)}^2}}}$ $ = \mathop {\lim }\limits_{x \to 0} \frac{1}{{1 + 2}}$ $ = \frac{1}{3}$ Since the limit does not equals $0$, $f\left( {x,y} \right)$ does not approach one limit as $\left( {x,y} \right) \to \left( {0,0} \right)$. Therefore, $\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} f\left( {x,y} \right)$ does not exist.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.