Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.2 Limits and Continuity in Several Variables - Exercises - Page 773: 48

Answer

We show that $\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {a,b} \right)} F\left( x \right) = \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {a,b} \right)} f\left( x \right)g\left( y \right) = f\left( a \right)g\left( b \right)$ Hence by definition, $F\left( {x,y} \right) = f\left( x \right)g\left( y \right)$ is continuous at $\left( {a,b} \right)$.

Work Step by Step

Let $f\left( x \right)$ be continuous at $x=a$ and $g\left( y \right)$ be continuous at $y=b$. Then, by definition $\mathop {\lim }\limits_{x \to a} f\left( x \right) = f\left( a \right)$ ${\ \ }$ and ${\ \ }$ $\mathop {\lim }\limits_{y \to b} g\left( y \right) = g\left( b \right)$ If $F\left( {x,y} \right) = f\left( x \right)g\left( y \right)$, then by Product Law of limit $\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {a,b} \right)} F\left( {x,y} \right) = \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {a,b} \right)} f\left( x \right)g\left( y \right) = \left( {\mathop {\lim }\limits_{x \to a} f\left( x \right)} \right)\left( {\mathop {\lim }\limits_{y \to b} g\left( y \right)} \right)$ $ = f\left( a \right)g\left( b \right)$ Since $\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {a,b} \right)} F\left( x \right) = \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {a,b} \right)} f\left( x \right)g\left( y \right) = f\left( a \right)g\left( b \right)$, by definition, $F\left( {x,y} \right) = f\left( x \right)g\left( y \right)$ is continuous at $\left( {a,b} \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.