Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.2 Limits and Continuity in Several Variables - Exercises - Page 773: 47

Answer

The limit $f\left( {x,y} \right) = \left\{ {\begin{array}{*{20}{c}} {\frac{{\left( {{2^x} - 1} \right)\left( {\sin y} \right)}}{{xy}}}&{if}&{xy \ne 0}\\ {\ln 2}&{if}&{xy = 0} \end{array}} \right.$ is continuous at $\left( {0,0} \right)$.

Work Step by Step

Firstly, we find the limit $\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{\left( {{2^x} - 1} \right)\left( {\sin y} \right)}}{{xy}}$ Since the limit is equal to a product of limits, so $\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{\left( {{2^x} - 1} \right)\left( {\sin y} \right)}}{{xy}} = \left( {\mathop {\lim }\limits_{x \to 0} \frac{{{2^x} - 1}}{x}} \right)\left( {\mathop {\lim }\limits_{y \to 0} \frac{{\sin y}}{y}} \right)$ But $\mathop {\lim }\limits_{y \to 0} \frac{{\sin y}}{y} = 1$, so $\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{\left( {{2^x} - 1} \right)\left( {\sin y} \right)}}{{xy}} = \left( {\mathop {\lim }\limits_{x \to 0} \frac{{{2^x} - 1}}{x}} \right)\left( {\mathop {\lim }\limits_{y \to 0} \frac{{\sin y}}{y}} \right) = \mathop {\lim }\limits_{x \to 0} \frac{{{2^x} - 1}}{x}$ Recall from Theorem 1 of Section 7.3 on page 338, we obtain the derivative of ${2^x}$ with respect to $x$: $\frac{d}{{dx}}{2^x} = \left( {\ln 2} \right){2^x}$ Applying L'Hôpital's rule to the limit, we get $\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{\left( {{2^x} - 1} \right)\left( {\sin y} \right)}}{{xy}} = \mathop {\lim }\limits_{x \to 0} \frac{{{2^x} - 1}}{x}$ $ = \mathop {\lim }\limits_{x \to 0} \frac{{\left( {\ln 2} \right){2^x}}}{1} = \ln 2$ Thus, $\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{\left( {{2^x} - 1} \right)\left( {\sin y} \right)}}{{xy}} = \ln 2 = f\left( {0,0} \right)$ Hence, by definition the function is continuous at $\left( {0,0} \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.