Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.5 Motion in 3-Space - Exercises - Page 746: 55

Answer

Using the identity: $\left( {{\bf{A}} \times {\bf{B}}} \right) \times {\bf{C}} = {\bf{B}}\left( {{\bf{A}}\cdot{\bf{C}}} \right) - {\bf{A}}\left( {{\bf{B}}\cdot{\bf{C}}} \right)$ we show that ${\bf{r}}' = \frac{{\left( {{\bf{J}} \times {\bf{r}}} \right)}}{{||{\bf{r}}|{|^2}}}$

Work Step by Step

Recall the identity: $\left( {{\bf{A}} \times {\bf{B}}} \right) \times {\bf{C}} = {\bf{B}}\left( {{\bf{A}}\cdot{\bf{C}}} \right) - {\bf{A}}\left( {{\bf{B}}\cdot{\bf{C}}} \right)$ We have ${\bf{J}} = {\bf{r}} \times {\bf{r}}'$. So, ${\bf{J}} \times {\bf{r}} = \left( {{\bf{r}} \times {\bf{r}}'} \right) \times {\bf{r}}$. Using the identity above we obtain ${\bf{J}} \times {\bf{r}} = {\bf{r}}'\left( {{\bf{r}}\cdot{\bf{r}}} \right) - {\bf{r}}\left( {{\bf{r}}'\cdot{\bf{r}}} \right)$ Since ${\bf{r}}$ and ${\bf{r}}'$ are perpendicular, so ${\bf{J}} \times {\bf{r}} = {\bf{r}}'||{\bf{r}}|{|^2}$. Hence, ${\bf{r}}' = \frac{{\left( {{\bf{J}} \times {\bf{r}}} \right)}}{{||{\bf{r}}|{|^2}}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.