Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.5 Motion in 3-Space - Exercises - Page 746: 54

Answer

Using Eq. (1) and Eq. (3) of Theorem 1 of Section 14.4 we prove that ${a_{\bf{N}}} = \frac{{||{\bf{a}} \times {\bf{v}}||}}{{||{\bf{v}}||}}$

Work Step by Step

By Eq. (1) we have ${a_{\bf{N}}} = \kappa \left( t \right)v{\left( t \right)^2}$. By Eq. (3) of Theorem 1 of Section 14.4, the curvature is given by $\kappa \left( t \right) = \frac{{||{\bf{r}}'\left( t \right) \times {\bf{r}}{\rm{''}}\left( t \right)||}}{{||{\bf{r}}'\left( t \right)|{|^3}}}$ or $\kappa \left( t \right) = \frac{{||{\bf{v}}\left( t \right) \times {\bf{a}}\left( t \right)||}}{{||{\bf{v}}\left( t \right)|{|^3}}} = \frac{{||{\bf{a}}\left( t \right) \times {\bf{v}}\left( t \right)||}}{{||{\bf{v}}\left( t \right)|{|^3}}}$ Since $||{\bf{v}}\left( t \right)|| = v\left( t \right)$, thus, ${a_{\bf{N}}} = \frac{{||{\bf{a}}\left( t \right) \times {\bf{v}}\left( t \right)||}}{{||{\bf{v}}\left( t \right)|{|^3}}}v{\left( t \right)^2} = \frac{{||{\bf{a}}\left( t \right) \times {\bf{v}}\left( t \right)||}}{{||{\bf{v}}\left( t \right)||}}$ We drop the parameter $t$ for convenience and obtain ${a_{\bf{N}}} = \frac{{||{\bf{a}} \times {\bf{v}}||}}{{||{\bf{v}}||}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.