Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.5 Motion in 3-Space - Exercises - Page 746: 51

Answer

His acceleration vector at $t = \frac{\pi }{2}$: ${\bf{a}}\left( {\frac{\pi }{2}} \right) = \left( { - \frac{1}{{2\sqrt 2 }}, - \frac{9}{2},\frac{1}{{2\sqrt 2 }}} \right)$

Work Step by Step

We have the path traced by the runner ${\bf{r}}\left( t \right) = \left( {\cos t,\sin t,t} \right)$. At $t = \frac{\pi }{2}$, we have his speed $v\left( {\frac{\pi }{2}} \right) = 3$. He is accelerating with $v'\left( t \right) = {a_{\bf{T}}}\left( t \right) = \frac{1}{2}$. 1. Find the unit tangent vector and normal vector of the path: ${\bf{T}}\left( t \right) = \frac{{{\bf{v}}\left( t \right)}}{{||{\bf{v}}\left( t \right)||}} = \frac{{\left( { - \sin t,\cos t,1} \right)}}{{\sqrt {\left( { - \sin t,\cos t,1} \right)\cdot\left( { - \sin t,\cos t,1} \right)} }}$ ${\bf{T}}\left( t \right) = \left( { - \frac{1}{{\sqrt 2 }}\sin t,\frac{1}{{\sqrt 2 }}\cos t,\frac{1}{{\sqrt 2 }}} \right)$ ${\bf{T}}\left( {\frac{\pi }{2}} \right) = \left( { - \frac{1}{{\sqrt 2 }},0,\frac{1}{{\sqrt 2 }}} \right)$ We find the unit normal vector using ${\bf{N}}\left( t \right) = \frac{{{\bf{T}}'\left( t \right)}}{{||{\bf{T}}'\left( t \right)||}} = \frac{{\left( { - \frac{1}{{\sqrt 2 }}\cos t, - \frac{1}{{\sqrt 2 }}\sin t,0} \right)}}{{\sqrt {\left( { - \frac{1}{{\sqrt 2 }}\cos t, - \frac{1}{{\sqrt 2 }}\sin t,0} \right)\cdot\left( { - \frac{1}{{\sqrt 2 }}\cos t, - \frac{1}{{\sqrt 2 }}\sin t,0} \right)} }}$ ${\bf{N}}\left( t \right) = \left( { - \cos t, - \sin t,0} \right)$ ${\bf{N}}\left( {\frac{\pi }{2}} \right) = \left( {0, - 1,0} \right)$ 2. Next, we evaluate the curvature of the path by using Eq. (3) of Theorem 1 of Section 14.4: $\kappa \left( t \right) = \frac{{||{\bf{r}}'\left( t \right) \times {\bf{r}}{\rm{''}}\left( t \right)||}}{{||{\bf{r}}'\left( t \right)|{|^3}}}$ $\kappa \left( {\frac{\pi }{2}} \right) = \frac{{||\left( { - 1,0,1} \right) \times \left( {0, - 1,0} \right)||}}{{{{\left( {\sqrt {\left( { - 1,0,1} \right)\cdot\left( { - 1,0,1} \right)} } \right)}^3}}} = \frac{1}{2}$ By Eq. (1), the normal component of the acceleration is ${a_{\bf{N}}} = \kappa \left( t \right)v{\left( t \right)^2}$ At $t = \frac{\pi }{2}$, we get ${a_{\bf{N}}} = \frac{1}{2}{\left( 3 \right)^2} = \frac{9}{2}$. Thus, the acceleration vector of the runner is decomposed into ${\bf{a}}\left( t \right) = {a_{\bf{T}}}{\bf{T}}\left( t \right) + {a_{\bf{N}}}{\bf{N}}\left( t \right)$ ${\bf{a}}\left( {\frac{\pi }{2}} \right) = \frac{1}{2}{\bf{T}}\left( {\frac{\pi }{2}} \right) + \frac{9}{2}{\bf{N}}\left( {\frac{\pi }{2}} \right) = \left( { - \frac{1}{{2\sqrt 2 }}, - \frac{9}{2},\frac{1}{{2\sqrt 2 }}} \right)$, where ${\bf{T}}\left( {\frac{\pi }{2}} \right) = \left( { - \frac{1}{{\sqrt 2 }},0,\frac{1}{{\sqrt 2 }}} \right)$ and ${\bf{N}}\left( {\frac{\pi }{2}} \right) = \left( {0, - 1,0} \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.