Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.5 Motion in 3-Space - Exercises - Page 745: 33

Answer

${a_{\bf{T}}} = 0$, ${\ \ \ }$ ${a_{\bf{N}}} = 1$

Work Step by Step

We have ${\bf{r}}\left( t \right) = \left( {t,\cos t,\sin t} \right)$. The velocity and acceleration vectors are ${\bf{v}}\left( t \right) = {\bf{r}}'\left( t \right) = \left( {1, - \sin t,\cos t} \right)$ and ${\bf{a}}\left( t \right) = {\bf{r}}{\rm{''}}\left( t \right) = \left( {0, - \cos t, - \sin t} \right)$, respectively. By Eq. (2) of Theorem 1 we have ${a_{\bf{T}}} = \frac{{{\bf{a}}\cdot{\bf{v}}}}{{||{\bf{v}}||}} = \frac{{\left( {0, - \cos t, - \sin t} \right)\cdot\left( {1, - \sin t,\cos t} \right)}}{{\sqrt {\left( {1, - \sin t,\cos t} \right)\cdot\left( {1, - \sin t,\cos t} \right)} }}$ ${a_{\bf{T}}} = 0$ By Eq. (2) of Theorem 1 we have ${a_{\bf{N}}} = \sqrt {||{\bf{a}}|{|^2} - |{a_{\bf{T}}}{|^2}} $ ${a_{\bf{N}}} = \sqrt {\left( {0, - \cos t, - \sin t} \right)\cdot\left( {0, - \cos t, - \sin t} \right)} $ ${a_{\bf{N}}} = \sqrt 1 = 1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.