Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.5 Motion in 3-Space - Exercises - Page 745: 30

Answer

The decomposition of ${\bf{a}}$: ${\bf{a}} = {a_{\bf{T}}}{\bf{T}} + {a_{\bf{N}}}{\bf{N}} = \frac{5}{3}{\bf{T}} + \frac{{10\sqrt 2 }}{3}{\bf{N}}$, where ${\bf{T}} = \left( {\frac{2}{3},\frac{2}{3}, - \frac{1}{3}} \right)$ and ${\bf{N}} = \left( { - \frac{1}{{3\sqrt 2 }},\frac{{13}}{{15\sqrt 2 }},\frac{{16}}{{15\sqrt 2 }}} \right)$.

Work Step by Step

We have at some time $t$, ${\bf{v}} = \left( {2,2, - 1} \right)$. So, the unit tangent vector is ${\bf{T}} = \frac{{\bf{v}}}{{||{\bf{v}}||}} = \frac{{\left( {2,2, - 1} \right)}}{{\sqrt {\left( {2,2, - 1} \right)\cdot\left( {2,2, - 1} \right)} }} = \frac{1}{3}\left( {2,2, - 1} \right)$ ${\bf{T}} = \left( {\frac{2}{3},\frac{2}{3}, - \frac{1}{3}} \right)$ By Eq. (2) of Theorem 1 we have ${a_{\bf{T}}} = \frac{{{\bf{a}}\cdot{\bf{v}}}}{{||{\bf{v}}||}} = \frac{{\left( {0,4,3} \right)\cdot\left( {2,2, - 1} \right)}}{{\sqrt {\left( {2,2, - 1} \right)\cdot\left( {2,2, - 1} \right)} }} = \frac{5}{3}$ ${a_{\bf{N}}} = \sqrt {||{\bf{a}}|{|^2} - |{a_{\bf{T}}}{|^2}} $ ${a_{\bf{N}}} = \sqrt {\left( {0,4,3} \right)\cdot\left( {0,4,3} \right) - \frac{{25}}{9}} = \sqrt {25 - \frac{{25}}{9}} = \frac{{10\sqrt 2 }}{3}$ By Eq. (3) of Theorem 1, we have ${a_{\bf{N}}}{\bf{N}} = {\bf{a}} - \left( {\frac{{{\bf{a}}\cdot{\bf{v}}}}{{{\bf{v}}\cdot{\bf{v}}}}} \right){\bf{v}}$ ${a_{\bf{N}}}{\bf{N}} = \left( {0,4,3} \right) - \left( {\frac{{\left( {0,4,3} \right)\cdot\left( {2,2, - 1} \right)}}{{\left( {2,2, - 1} \right)\cdot\left( {2,2, - 1} \right)}}} \right)\left( {2,2, - 1} \right)$ ${a_{\bf{N}}}{\bf{N}} = \left( {0,4,3} \right) - \frac{5}{9}\left( {2,2, - 1} \right) = \left( { - \frac{{10}}{9},\frac{{26}}{9},\frac{{32}}{9}} \right)$ Since ${a_{\bf{N}}} = \frac{{10\sqrt 2 }}{3}$, so ${\bf{N}} = \frac{3}{{10\sqrt 2 }}\left( { - \frac{{10}}{9},\frac{{26}}{9},\frac{{32}}{9}} \right) = \left( { - \frac{1}{{3\sqrt 2 }},\frac{{13}}{{15\sqrt 2 }},\frac{{16}}{{15\sqrt 2 }}} \right)$ Thus, the decomposition of ${\bf{a}}$: ${\bf{a}} = {a_{\bf{T}}}{\bf{T}} + {a_{\bf{N}}}{\bf{N}} = \frac{5}{3}{\bf{T}} + \frac{{10\sqrt 2 }}{3}{\bf{N}}$, where ${\bf{T}} = \left( {\frac{2}{3},\frac{2}{3}, - \frac{1}{3}} \right)$ and ${\bf{N}} = \left( { - \frac{1}{{3\sqrt 2 }},\frac{{13}}{{15\sqrt 2 }},\frac{{16}}{{15\sqrt 2 }}} \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.