Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.5 Motion in 3-Space - Exercises - Page 745: 28

Answer

The position of the mass at $t=3$ is ${\bf{r}}\left( 3 \right) = \left( {37,21} \right)$.

Work Step by Step

We have the force ${\bf{F}} = \left( {24t,16 - 8t} \right)$ and $m=4$. By Newton's second law: ${\bf{F}} = m{\bf{a}}$. So, $\left( {24t,16 - 8t} \right) = 4{\bf{a}}$, ${\ \ \ }$ ${\bf{a}} = \left( {6t,4 - 2t} \right)$ 1. Find the velocity vector We have ${\bf{v}}\left( t \right) = \smallint {\bf{a}}\left( t \right){\rm{d}}t = \smallint \left( {6t,4 - 2t} \right){\rm{d}}t = \left( {3{t^2},4t - {t^2}} \right) + {{\bf{c}}_0}$ The initial condition ${\bf{v}}\left( 0 \right) = \left( {0,0} \right)$ gives $\left( {0,0} \right) = \left( {0,0} \right) + {{\bf{c}}_0}$ ${{\bf{c}}_0} = \left( {0,0} \right)$ Thus, ${\bf{v}}\left( t \right) = \left( {3{t^2},4t - {t^2}} \right)$ 2. Find the position vector We have ${\bf{r}}\left( t \right) = \smallint {\bf{v}}\left( t \right){\rm{d}}t = \smallint \left( {3{t^2},4t - {t^2}} \right){\rm{d}}t$ ${\bf{r}}\left( t \right) = \left( {{t^3},2{t^2} - \frac{1}{3}{t^3}} \right) + {{\bf{c}}_1}$ The initial condition ${\bf{r}}\left( 0 \right) = \left( {10,12} \right)$ gives $\left( {10,12} \right) = \left( {0,0} \right) + {{\bf{c}}_1}$ ${{\bf{c}}_1} = \left( {10,12} \right)$ Thus, the position of the mass at $t$ seconds is ${\bf{r}}\left( t \right) = \left( {{t^3},2{t^2} - \frac{1}{3}{t^3}} \right) + \left( {10,12} \right)$ ${\bf{r}}\left( t \right) = \left( {{t^3} + 10,2{t^2} - \frac{1}{3}{t^3} + 12} \right)$ The position of the mass at $t=3$ is ${\bf{r}}\left( 3 \right) = \left( {37,21} \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.