Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.2 Calculus of Vector-Valued Functions - Exercises - Page 721: 62

Answer

By taking the derivative of ${\bf{w}}\left( t \right)$ twice, we obtain ${\bf{w}}{\rm{''}}\left( t \right) = - 9{\bf{w}}\left( t \right)$

Work Step by Step

We have ${\bf{w}}\left( t \right) = \left( {\sin \left( {3t + 4} \right),\sin \left( {3t - 2} \right),\cos 3t} \right)$. Taking the derivative of ${\bf{w}}\left( t \right)$ gives ${\bf{w}}'\left( t \right) = \left( {3\cos \left( {3t + 4} \right),3\cos \left( {3t - 2} \right), - 3\sin 3t} \right)$ Another derivative gives ${\bf{w}}{\rm{''}}\left( t \right) = \left( { - 9\sin \left( {3t + 4} \right), - 9\sin \left( {3t - 2} \right), - 9\cos 3t} \right)$ ${\bf{w}}{\rm{''}}\left( t \right) = - 9\left( {\sin \left( {3t + 4} \right),\sin \left( {3t - 2} \right),\cos 3t} \right)$ Hence, ${\bf{w}}{\rm{''}}\left( t \right) = - 9{\bf{w}}\left( t \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.