Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.2 Calculus of Vector-Valued Functions - Exercises - Page 721: 54

Answer

The general solution of the position vector: ${\bf{r}}\left( t \right) = \left( {{{\rm{e}}^t} - t,3t - \sin t,2t - \cos t} \right) + {{\bf{c}}_2}$, where ${{\bf{c}}_2}$ is a constant vector. The solution with the given initial condition: ${\bf{r}}\left( t \right) = \left( {{{\rm{e}}^t} - t,3t - \sin t,2t - \cos t + 2} \right)$

Work Step by Step

We have the differential equation: ${\bf{r}}{\rm{''}}\left( t \right) = \left( {{{\rm{e}}^t},\sin t,\cos t} \right)$ We find the general solution of the velocity vector by integration: ${\bf{r}}'\left( t \right) = \mathop \smallint \limits_{}^{} \left( {{{\rm{e}}^t},\sin t,\cos t} \right){\rm{d}}t = \left( {{{\rm{e}}^t}, - \cos t,\sin t} \right) + {{\bf{c}}_1}$ Using the initial condition ${\bf{r}}'\left( 0 \right) = \left( {0,2,2} \right)$, we obtain ${\bf{r}}'\left( 0 \right) = \left( {1, - 1,0} \right) + {{\bf{c}}_1} = \left( {0,2,2} \right)$ Therefore, ${{\bf{c}}_1} = \left( { - 1,3,2} \right)$. So, the solution with the given initial condition is ${\bf{r}}'\left( t \right) = \left( {{{\rm{e}}^t}, - \cos t,\sin t} \right) + \left( { - 1,3,2} \right)$ ${\bf{r}}'\left( t \right) = \left( {{{\rm{e}}^t} - 1,3 - \cos t,2 + \sin t} \right)$ We find the general solution of the position vector by integration: ${\bf{r}}\left( t \right) = \mathop \smallint \limits_{}^{} \left( {{{\rm{e}}^t} - 1,3 - \cos t,2 + \sin t} \right){\rm{d}}t$ ${\bf{r}}\left( t \right) = \left( {{{\rm{e}}^t} - t,3t - \sin t,2t - \cos t} \right) + {{\bf{c}}_2}$ Using the initial condition ${\bf{r}}\left( 0 \right) = \left( {1,0,1} \right)$, we obtain ${\bf{r}}\left( 0 \right) = \left( {1,0, - 1} \right) + {{\bf{c}}_2} = \left( {1,0,1} \right)$ Therefore, ${{\bf{c}}_2} = \left( {0,0,2} \right)$. So, the solution with the given initial condition is ${\bf{r}}\left( t \right) = \left( {{{\rm{e}}^t} - t,3t - \sin t,2t - \cos t} \right) + \left( {0,0,2} \right)$ ${\bf{r}}\left( t \right) = \left( {{{\rm{e}}^t} - t,3t - \sin t,2t - \cos t + 2} \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.