Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.2 Calculus of Vector-Valued Functions - Exercises - Page 721: 55

Answer

At $t=3$ the location of the particle is ${\bf{r}}\left( 3 \right) = \left( {\frac{{45}}{4},5} \right)$.

Work Step by Step

We have $\frac{{d{\bf{r}}}}{{dt}} = \left( {2t - \frac{1}{{{{\left( {t + 1} \right)}^2}}},2t - 4} \right)$ and ${\bf{r}}\left( 0 \right) = \left( {3,8} \right)$. We find the position vector by integration: ${\bf{r}}\left( t \right) = \mathop \smallint \limits_{}^{} \left( {2t - \frac{1}{{{{\left( {t + 1} \right)}^2}}},2t - 4} \right){\rm{d}}t$ ${\bf{r}}\left( t \right) = \left( {{t^2} + \frac{1}{{t + 1}},{t^2} - 4t} \right) + {\bf{c}}$, where ${\bf{c}}$ is a constant vector. Using the initial condition ${\bf{r}}\left( 0 \right) = \left( {3,8} \right)$, we obtain ${\bf{r}}\left( 0 \right) = \left( {1,0} \right) + {\bf{c}} = \left( {3,8} \right)$ Therefore, ${\bf{c}} = \left( {2,8} \right)$. So, the position vector with the given initial condition is ${\bf{r}}\left( t \right) = \left( {{t^2} + \frac{1}{{t + 1}},{t^2} - 4t} \right) + \left( {2,8} \right)$ ${\bf{r}}\left( t \right) = \left( {2 + {t^2} + \frac{1}{{t + 1}},8 + {t^2} - 4t} \right)$ At $t=3$ the location of the particle is ${\bf{r}}\left( 3 \right) = \left( {\frac{{45}}{4},5} \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.