Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.2 Calculus of Vector-Valued Functions - Exercises - Page 721: 61

Answer

The solutions are ${\bf{r}}\left( t \right) = {{\rm{e}}^{2t}}{\bf{c}}$, where ${\bf{c}} = \left( {{c_1},{c_2},{c_3}} \right)$, a constant vector.

Work Step by Step

We have ${\bf{r}}'\left( t \right) = 2{\bf{r}}\left( t \right)$, where ${\bf{r}}\left( t \right)$ is a vector-valued function in 3-space. Let the components of ${\bf{r}}\left( t \right)$ be ${\bf{r}}\left( t \right) = \left( {x\left( t \right),y\left( t \right),z\left( t \right)} \right)$. So, ${\bf{r}}'\left( t \right) = \left( {x'\left( t \right),y'\left( t \right),z'\left( t \right)} \right)$. Thus, ${\bf{r}}'\left( t \right) = 2{\bf{r}}\left( t \right)$ becomes $\left( {x'\left( t \right),y'\left( t \right),z'\left( t \right)} \right) = \left( {2x\left( t \right),2y\left( t \right),2z\left( t \right)} \right)$ We obtain a system of equations: $x'\left( t \right) = 2x\left( t \right)$, ${\ \ }$ $y'\left( t \right) = 2y\left( t \right)$, ${\ \ }$ $z'\left( t \right) = 2z\left( t \right)$ Evaluate $x'\left( t \right) = 2x\left( t \right)$. Write $x'\left( t \right) = \frac{{dx\left( t \right)}}{{dt}} = 2x\left( t \right)$. So, $\smallint \frac{{dx\left( t \right)}}{{x\left( t \right)}} = 2\smallint {\rm{d}}t$, $\ln x\left( t \right) = 2t$, $x\left( t \right) = {c_1}{{\rm{e}}^{2t}}$, where ${c_1}$ is constant of integration. By symmetry we also obtain $y\left( t \right) = {c_2}{{\rm{e}}^{2t}}$ and $z\left( t \right) = {c_3}{{\rm{e}}^{2t}}$. Hence, ${\bf{r}}\left( t \right) = \left( {x\left( t \right),y\left( t \right),z\left( t \right)} \right) = \left( {{c_1}{{\rm{e}}^{2t}},{c_2}{{\rm{e}}^{2t}},{c_3}{{\rm{e}}^{2t}}} \right)$ ${\bf{r}}\left( t \right) = {{\rm{e}}^{2t}}\left( {{c_1},{c_2},{c_3}} \right)$ Write ${\bf{c}} = \left( {{c_1},{c_2},{c_3}} \right)$. So, the solutions are ${\bf{r}}\left( t \right) = {{\rm{e}}^{2t}}{\bf{c}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.