Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 13 - Vector Geometry - Chapter Review Exercises - Page 701: 8

Answer

$Q = \left( {1,8} \right)$

Work Step by Step

We have $A = \left( {2, - 1} \right)$, $B = \left( {1,4} \right)$, and $P = \left( {2,3} \right)$. So, the components of $\overrightarrow {AB} $ is $\overrightarrow {AB} = B - A = \left( {1,4} \right) - \left( {2, - 1} \right) = \left( { - 1,5} \right)$ Let $Q = \left( {x,y} \right)$. So, the components of $\overrightarrow {PQ} $ is $\overrightarrow {PQ} = Q - P = \left( {x,y} \right) - \left( {2,3} \right) = \left( {x - 2,y - 3} \right)$ Two vectors are equivalent if and only if they have the same components. Thus, $\overrightarrow {PQ} $ is equivalent to $\overrightarrow {AB} $ if $\left( {x - 2,y - 3} \right) = \left( { - 1,5} \right)$. It follows that $Q = \left( {x,y} \right) = \left( {1,8} \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.