Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 13 - Vector Geometry - Chapter Review Exercises - Page 701: 6

Answer

There are two solutions for $\alpha$: ${\alpha _1} = \frac{1}{{13}}\left( {16 + \sqrt {347} } \right)$ and ${\alpha _2} = \frac{1}{{13}}\left( {16 - \sqrt {347} } \right)$

Work Step by Step

We have ${\bf{v}} = \left( { - 2,5} \right)$, ${\bf{w}} = \left( {3, - 2} \right)$ and $||{\bf{v}} + \alpha {\bf{w}}|| = 6$. Since $||{\bf{v}} + \alpha {\bf{w}}|{|^2} = \left( {{\bf{v}} + \alpha {\bf{w}}} \right)\cdot\left( {{\bf{v}} + \alpha {\bf{w}}} \right),$, so $||{\bf{v}} + \alpha {\bf{w}}|{|^2} = {\bf{v}}\cdot{\bf{v}} + \alpha {\bf{w}}\cdot{\bf{v}} + \alpha {\bf{v}}\cdot{\bf{w}} + {\alpha ^2}{\bf{w}}\cdot{\bf{w}}$ $||{\bf{v}} + \alpha {\bf{w}}|{|^2} = ||{\bf{v}}|{|^2} + 2\alpha {\bf{v}}\cdot{\bf{w}} + {\alpha ^2}||{\bf{w}}|{|^2}$ Evaluate $||{\bf{v}}|{|^2}$, ${\bf{v}}\cdot{\bf{w}}$ and $||{\bf{w}}|{|^2}$: $||{\bf{v}}|{|^2} = {\left( { - 2} \right)^2} + {5^2} = 29$ ${\bf{v}}\cdot{\bf{w}} = \left( { - 2,5} \right)\cdot\left( {3, - 2} \right) = - 16$ $||{\bf{w}}|{|^2} = {3^2} + {\left( { - 2} \right)^2} = 13$ So, $||{\bf{v}} + \alpha {\bf{w}}|{|^2} = 29 - 32\alpha + 13{\alpha ^2}$ Since $||{\bf{v}} + \alpha {\bf{w}}|| = 6$, $29 - 32\alpha + 13{\alpha ^2} = 36$ $13{\alpha ^2} - 32\alpha - 7 = 0$ The solutions to this quadratic equation: $\alpha = \frac{{32 \pm \sqrt {{{\left( { - 32} \right)}^2} - 4\cdot13\cdot\left( { - 7} \right)} }}{{2\cdot13}} = \frac{1}{{13}}\left( {16 \pm \sqrt {347} } \right)$ So, there are two solutions for $\alpha$: ${\alpha _1} = \frac{1}{{13}}\left( {16 + \sqrt {347} } \right)$ and ${\alpha _2} = \frac{1}{{13}}\left( {16 - \sqrt {347} } \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.