Answer
$(\frac{5}{\sqrt 2}, \frac{5}{\sqrt 2},2) \Longrightarrow (5, \frac{\pi}{4},2) $.
Work Step by Step
We have $$ x=\frac{5}{\sqrt 2}, \quad y =\frac{5}{\sqrt 2}, \quad z=2.$$
Now, we have
$$ r=\sqrt{x^2+y^2}=\sqrt{50/2}=5,$$
$$\theta =\tan^{-1}y/x=\tan^{-1}1=\frac{\pi}{4},$$
$$ z=2.$$
So, $(\frac{5}{\sqrt 2}, \frac{5}{\sqrt 2},2) \Longrightarrow (5, \frac{\pi}{4},2) $.