Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 13 - Vector Geometry - 13.7 Cylindrical and Spherical Coordinates - Exercises - Page 699: 16

Answer

$$ r^2\sin^2\theta +z^2\leq 9 , \quad 0\leq\theta\leq \pi/4 \ or \ 5\pi/4\leq\theta\leq 2\pi.$$

Work Step by Step

Since $$ x=r\cos \theta,\quad y=r\cos \theta, \quad z=z,$$ then $$ y^2+z^2\leq 9, \quad x\geq y $$ takes the form $$ r^2\sin^2\theta +z^2\leq 9 .$$ Moreover, $$ x\geq y\Longrightarrow \cos\theta \geq \sin\theta\\ \Longrightarrow 0\leq\theta\leq \pi/4 \ or \ 5\pi/4\leq\theta\leq 2\pi.$$ Hence, $$ r^2\sin^2\theta +z^2\leq 9 , \quad 0\leq\theta\leq \pi/4 \ or \ 5\pi/4\leq\theta\leq 2\pi.$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.