Answer
$(3, 3\sqrt 3,2) \Longrightarrow (6, \frac{\pi}{3},2) $.
Work Step by Step
We have $$ x=3, \quad y =3\sqrt 3, \quad z=2.$$
Now, we have
$$ r=\sqrt{x^2+y^2}=\sqrt{36}=6,$$
$$\theta =\tan^{-1}y/x=\tan^{-1}\sqrt 3=\frac{\pi}{3},$$
$$ z=2.$$
So, $(3, 3\sqrt 3,2) \Longrightarrow (6, \frac{\pi}{3},2) $.