Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 12 - Parametric Equations, Polar Coordinates, and Conic Sections - 12.4 Area and Arc Length in Polar - Exercises - Page 624: 21

Answer

The area inside both curves: $area = \frac{{9\pi }}{2} - 4\sqrt 2 $

Work Step by Step

First, we find the intersection points between the two curves $r = 2 + \sin 2\theta $ and $r = 2 + \cos 2\theta $ by solving the equation $r = 2 + \sin 2\theta = 2 + \cos 2\theta $ $\sin 2\theta = \cos 2\theta $ The solution is in the form $2\theta = \frac{\pi }{4} + 2\pi n$ or $2\theta = - \frac{{3\pi }}{4} + 2\pi n$ for $n = 1,2,3,...$ For the interval $0 \le \theta \le 2\pi $, the solutions are $\theta = \frac{\pi }{8},\frac{{5\pi }}{8},\frac{{9\pi }}{8},\frac{{13\pi }}{8}$. Next, we find part of the area of the curve $r = 2 + \cos 2\theta $ in the interval $\frac{\pi }{8} \le \theta \le \frac{{5\pi }}{8}$. Let $A$ denote this area. So, $A = \frac{1}{2}\cdot\mathop \smallint \limits_{\pi /8}^{5\pi /8} {\left( {2 + \cos 2\theta } \right)^2}{\rm{d}}\theta $ $A = \frac{1}{2}\cdot\mathop \smallint \limits_{\pi /8}^{5\pi /8} \left( {4 + 4\cos 2\theta + {{\cos }^2}2\theta } \right){\rm{d}}\theta $ Since ${\cos ^2}2\theta = \frac{1}{2}\left( {1 + \cos 4\theta } \right)$, the integral becomes $A = \frac{1}{2}\cdot\mathop \smallint \limits_{\pi /8}^{5\pi /8} \left( {4 + 4\cos 2\theta + \frac{1}{2}\left( {1 + \cos 4\theta } \right)} \right){\rm{d}}\theta $ $A = \frac{1}{2}\left( {\frac{9}{2}\theta + 2\sin 2\theta + \frac{1}{8}\sin 4\theta } \right)|_{\pi /8}^{5\pi /8}$ $A = \frac{1}{2}\left( {\frac{{9\pi }}{4} + 2\sin \frac{{5\pi }}{4} - 2\sin \frac{\pi }{4} + \frac{1}{8}\sin \frac{{5\pi }}{2} - \frac{1}{8}\sin \frac{\pi }{2}} \right)$ $A = \frac{1}{2}\left( {\frac{{9\pi }}{4} - 2\sqrt 2 } \right)$ By symmetry, the area inside both curves are four times the area $A$. So, $area = 4\cdot\frac{1}{2}\left( {\frac{{9\pi }}{4} - 2\sqrt 2 } \right) = \frac{{9\pi }}{2} - 4\sqrt 2 $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.