Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 12 - Parametric Equations, Polar Coordinates, and Conic Sections - 12.4 Area and Arc Length in Polar - Exercises - Page 624: 15

Answer

Area of the inner loop $A \simeq 0.54$

Work Step by Step

Since $r = 2\cos \theta - 1$, the rectangular coordinates of a point on the curve corresponding to $\theta$ is given by $\left( {x,y} \right) = \left( {r\cos \theta ,r\sin \theta } \right)$, $\left( {x,y} \right) = \left( {\left( {2\cos \theta - 1} \right)\cos \theta ,\left( {2\cos \theta - 1} \right)\sin \theta } \right)$. For the interval $0 \le \theta \le 2\pi $, we compute several points in rectangular coordinates corresponding to $\theta = 0,\frac{\pi }{4},\frac{\pi }{3},\frac{\pi }{2},\pi ,\frac{{5\pi }}{4},\frac{{3\pi }}{2},2\pi $ and list them on the following table: $\begin{array}{*{20}{c}} \theta \\ 0\\ {\frac{\pi }{4}}\\ {\frac{\pi }{3}}\\ {\frac{\pi }{2}}\\ \pi \\ {\frac{{5\pi }}{4}}\\ {\frac{{3\pi }}{2}}\\ {2\pi } \end{array}\begin{array}{*{20}{c}} {\left( {x,y} \right)}\\ {\left( {1,0} \right)}\\ {\left( {0.293,0.293} \right)}\\ {\left( {0,0} \right)}\\ {\left( {0, - 1} \right)}\\ {\left( {3,0} \right)}\\ {\left( {1.707,1.707} \right)}\\ {\left( {0,1} \right)}\\ {\left( {1,0} \right)} \end{array}$ Then we plot the points in rectangular coordinates and sketch the curve by connecting these points. From this figure we see that the upper-half of the inner loop corresponds to the interval $0 \le \theta \le \frac{\pi }{3}$. Also, the entire region of the limaçon corresponds to the interval $0 \le \theta \le 2\pi $. By symmetry, the area of the inner loop is twice the area of the upper-half. Let $A$ denote the area of the inner loop. Using Eq. (2) of Theorem 1, we have $A = 2\cdot\frac{1}{2}\cdot\mathop \smallint \limits_0^{\pi /3} {\left( {2\cos \theta - 1} \right)^2}{\rm{d}}\theta $ $A = \mathop \smallint \limits_0^{\pi /3} \left( {4{{\cos }^2}\theta - 4\cos \theta + 1} \right){\rm{d}}\theta $ Since ${\cos ^2}\theta = \frac{1}{2}\left( {1 + \cos 2\theta } \right)$, the integral becomes $A = \mathop \smallint \limits_0^{\pi /3} \left( {2\left( {1 + \cos 2\theta } \right) - 4\cos \theta + 1} \right){\rm{d}}\theta $ $A = \left( {3\theta + \sin 2\theta - 4\sin \theta } \right)|_0^{\pi /3}$ $A = \pi + \frac{1}{2}\sqrt 3 - 2\sqrt 3 = \pi - \frac{3}{2}\sqrt 3 \simeq 0.54$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.