Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 12 - Parametric Equations, Polar Coordinates, and Conic Sections - 12.4 Area and Arc Length in Polar - Exercises - Page 624: 13

Answer

area of $A$ $ \simeq 11.1633$

Work Step by Step

First, we find the intersection points of the circle $r=1$ and $r = 4\cos \theta $ by solving the equation: $1 = 4\cos \theta $. So, we have $\cos \theta = \frac{1}{4}$ The solution is $\theta = \pm {\cos ^{ - 1}}\frac{1}{4}$. From the figure we see that the region of $A$ is between two polar curves: $r=1$ and $r = 4\cos \theta $. So, area of $A$ $ = \frac{1}{2}\cdot\mathop \smallint \limits_{ - {{\cos }^{ - 1}}\left( {1/4} \right)}^{{{\cos }^{ - 1}}\left( {1/4} \right)} \left( {{{\left( {4\cos \theta } \right)}^2} - 1} \right){\rm{d}}\theta $ area of $A$ $ = \frac{1}{2}\cdot\mathop \smallint \limits_{ - {{\cos }^{ - 1}}\left( {1/4} \right)}^{{{\cos }^{ - 1}}\left( {1/4} \right)} \left( {16{{\cos }^2}\theta - 1} \right){\rm{d}}\theta $ Since ${\cos ^2}\theta = \frac{1}{2}\left( {1 + \cos 2\theta } \right)$, the integral becomes area of $A$ $ = \frac{1}{2}\cdot\mathop \smallint \limits_{ - {{\cos }^{ - 1}}\left( {1/4} \right)}^{{{\cos }^{ - 1}}\left( {1/4} \right)} \left( {8 + 8\cos 2\theta - 1} \right){\rm{d}}\theta $ area of $A$ $ = \frac{1}{2}\left( {7\theta + 4\sin 2\theta } \right)|_{ - {{\cos }^{ - 1}}\left( {1/4} \right)}^{{{\cos }^{ - 1}}\left( {1/4} \right)}$ area of $A$ $ = \frac{1}{2}\left( {14{{\cos }^{ - 1}}\frac{1}{4} + 8\sin \left( {2{{\cos }^{ - 1}}\frac{1}{4}} \right)} \right) \simeq 11.1633$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.