Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 12 - Parametric Equations, Polar Coordinates, and Conic Sections - 12.4 Area and Arc Length in Polar - Exercises - Page 624: 17

Answer

$area \simeq 0.143$

Work Step by Step

From Exercise 28 in Section 12.3 we have obtained the following results: $\begin{array}{*{20}{c}} {Point}&\theta \\ {C = \left( {1,0} \right)}&{0,\pi }\\ {D = \left( {1,1} \right)}&{\frac{\pi }{4}}\\ {A = \left( {0,1} \right)}&{\frac{\pi }{2}}\\ {B = \left( {0,0} \right)}&{\frac{{3\pi }}{4}} \end{array}$ So, we see that part of the curve in the fourth quadrant traces out $B$ and $C$ corresponding to the interval $\frac{{3\pi }}{4} \le \theta \le \pi $. Using Eq. (2) of Theorem 1, the area in the fourth quadrant is $area = \frac{1}{2}\cdot\mathop \smallint \limits_{3\pi /4}^\pi {\left( {\sin \theta + \cos \theta } \right)^2}{\rm{d}}\theta $ $area = \frac{1}{2}\cdot\mathop \smallint \limits_{3\pi /4}^\pi \left( {{{\sin }^2}\theta + 2\sin \theta \cos \theta + {{\cos }^2}\theta } \right){\rm{d}}\theta $ Since ${\sin ^2}\theta + {\cos ^2}\theta = 1$ and $\sin 2\theta = 2\sin \theta \cos \theta $, the integral becomes $area = \frac{1}{2}\cdot\mathop \smallint \limits_{3\pi /4}^\pi \left( {1 + \sin 2\theta } \right){\rm{d}}\theta $ $area = \frac{1}{2}\left( {\theta - \frac{1}{2}\cos 2\theta } \right)|_{3\pi /4}^\pi $ $area = \frac{1}{2}\left( {\frac{\pi }{4} - \frac{1}{2}} \right) = \frac{\pi }{8} - \frac{1}{4} \simeq 0.143$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.