Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 12 - Parametric Equations, Polar Coordinates, and Conic Sections - 12.3 Polar Coordinates - Exercises - Page 618: 33

Answer

(a) The corresponding points in (B) are denoted by lowercase letters. They are listed in the table below: $\begin{array}{l} \begin{array}{*{20}{c}} {Figure21\left( {\rm{A}} \right)}\\ {Polar:\left( {r,\theta } \right)}\\ {A = \left( {0,0} \right)}\\ {B = \left( {1,\frac{\pi }{4}} \right)}\\ {C = \left( {0,\frac{\pi }{2}} \right)}\\ {D = \left( { - 1,\frac{{3\pi }}{4}} \right)} \end{array}\begin{array}{*{20}{c}} {Figure21\left( {\rm{B}} \right)}\\ {Rectangular:\left( {x,y} \right)}\\ {a = \left( {0,0} \right)}\\ {b = \left( {\frac{1}{2}\sqrt 2 ,\frac{1}{2}\sqrt 2 } \right)}\\ {c = \left( {0,0} \right)}\\ {d = \left( {\frac{1}{2}\sqrt 2 , - \frac{1}{2}\sqrt 2 } \right)} \end{array}\\ \begin{array}{*{20}{c}} {E = \left( {0,\pi } \right)}\\ {F = \left( {1,\frac{{5\pi }}{4}} \right)}\\ {G = \left( {0,\frac{{3\pi }}{2}} \right)}\\ {H = \left( { - 1,\frac{{7\pi }}{4}} \right)}\\ {I = \left( {0,2\pi } \right)} \end{array}\begin{array}{*{20}{c}} {e = \left( {0,0} \right)}\\ {f = \left( { - \frac{1}{2}\sqrt 2 , - \frac{1}{2}\sqrt 2 } \right)}\\ {g = \left( {0,0} \right)}\\ {h = \left( { - \frac{1}{2}\sqrt 2 ,\frac{1}{2}\sqrt 2 } \right)}\\ {i = \left( {0,0} \right)} \end{array} \end{array}$ (b) The interval: $\left[ {0,\frac{\pi }{2}} \right]$ The part of the curve in this interval is in the first quadrant. The interval: $\left[ {\frac{\pi }{2},\pi } \right]$ The part of the curve in this interval is in the fourth quadrant. The interval: $\left[ {\pi ,\frac{{3\pi }}{2}} \right]$ The part of the curve in this interval is in the third quadrant. The interval: $\left[ {\frac{{3\pi }}{2},2\pi } \right]$ The part of the curve in this interval is in the second quadrant.

Work Step by Step

From Figure 21 (A) and using $r=\sin 2\theta$, the points $A$ - $I$ in polar coordinates are $A = \left( {0,0} \right)$, $B = \left( {1,\frac{\pi }{4}} \right)$, $C = \left( {0,\frac{\pi }{2}} \right)$, $D = \left( { - 1,\frac{{3\pi }}{4}} \right)$, $E = \left( {0,\pi } \right)$, $F = \left( {1,\frac{{5\pi }}{4}} \right)$, $G = \left( {0,\frac{{3\pi }}{2}} \right)$, $H = \left( { - 1,\frac{{7\pi }}{4}} \right)$, $I = \left( {0,2\pi } \right)$. (a) To find the points in Figure 21 (B) corresponding to points $A$ - $I$ in Figure 21 (A), we use the conversion formula from polar coordinates to rectangular coordinates given by $x=r \cos \theta$, ${\ \ \ }$ $y=r \sin \theta$. Denote the corresponding points in (B) by lowercase letters. The results are listed in the table below: $\begin{array}{l} \begin{array}{*{20}{c}} {Figure21\left( {\rm{A}} \right)}\\ {Polar:\left( {r,\theta } \right)}\\ {A = \left( {0,0} \right)}\\ {B = \left( {1,\frac{\pi }{4}} \right)}\\ {C = \left( {0,\frac{\pi }{2}} \right)}\\ {D = \left( { - 1,\frac{{3\pi }}{4}} \right)} \end{array}\begin{array}{*{20}{c}} {Figure21\left( {\rm{B}} \right)}\\ {Rectangular:\left( {x,y} \right)}\\ {a = \left( {0,0} \right)}\\ {b = \left( {\frac{1}{2}\sqrt 2 ,\frac{1}{2}\sqrt 2 } \right)}\\ {c = \left( {0,0} \right)}\\ {d = \left( {\frac{1}{2}\sqrt 2 , - \frac{1}{2}\sqrt 2 } \right)} \end{array}\\ \begin{array}{*{20}{c}} {E = \left( {0,\pi } \right)}\\ {F = \left( {1,\frac{{5\pi }}{4}} \right)}\\ {G = \left( {0,\frac{{3\pi }}{2}} \right)}\\ {H = \left( { - 1,\frac{{7\pi }}{4}} \right)}\\ {I = \left( {0,2\pi } \right)} \end{array}\begin{array}{*{20}{c}} {e = \left( {0,0} \right)}\\ {f = \left( { - \frac{1}{2}\sqrt 2 , - \frac{1}{2}\sqrt 2 } \right)}\\ {g = \left( {0,0} \right)}\\ {h = \left( { - \frac{1}{2}\sqrt 2 ,\frac{1}{2}\sqrt 2 } \right)}\\ {i = \left( {0,0} \right)} \end{array} \end{array}$ (b) The interval: $\left[ {0,\frac{\pi }{2}} \right]$ Since the points $a$, $b$, $c$ are in this interval, the part of the curve in this interval is in the first quadrant. The interval: $\left[ {\frac{\pi }{2},\pi } \right]$ Since the points $c$, $d$, $e$ are in this interval, the part of the curve in this interval is in the fourth quadrant. The interval: $\left[ {\pi ,\frac{{3\pi }}{2}} \right]$ Since the points $e$, $f$, $g$ are in this interval, the part of the curve in this interval is in the third quadrant. The interval: $\left[ {\frac{{3\pi }}{2},2\pi } \right]$ Since the points $g$, $h$, $i$ are in this interval, the part of the curve in this interval is in the second quadrant.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.