Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 12 - Parametric Equations, Polar Coordinates, and Conic Sections - 12.3 Polar Coordinates - Exercises - Page 618: 32

Answer

We show that ${\left( {{x^2} + {y^2} - x} \right)^2} = {\left( {1 + \cos \theta } \right)^2}$ ${x^2} + {y^2} = {\left( {1 + \cos \theta } \right)^2}$, thus, ${\left( {{x^2} + {y^2} - x} \right)^2} = {x^2} + {y^2}$.

Work Step by Step

The cardioid of Exercise 31 is given in polar coordinates by $r=1+\cos \theta$. So, the rectangular coordinates of a point on the curve corresponding to $\theta$ is given by $\left( {x,y} \right) = \left( {r\cos \theta ,r\sin \theta } \right)$, $\left( {x,y} \right) = \left( {1 + \cos \theta } \right)\left( {\cos \theta ,\sin \theta } \right)$. We have $x = \left( {1 + \cos \theta } \right)\cos \theta $ ${\ \ \ }$ and ${\ \ \ }$ $y = \left( {1 + \cos \theta } \right)\sin \theta $. Substituting $x$ and $y$ in the equation ${\left( {{x^2} + {y^2} - x} \right)^2}$ gives ${\left( {{x^2} + {y^2} - x} \right)^2} = {\left( {{{\left( {1 + \cos \theta } \right)}^2}{{\cos }^2}\theta + {{\left( {1 + \cos \theta } \right)}^2}{{\sin }^2}\theta - \left( {1 + \cos \theta } \right)\cos \theta } \right)^2}$ ${\left( {{x^2} + {y^2} - x} \right)^2} = {\left( {{{\left( {1 + \cos \theta } \right)}^2} - \left( {1 + \cos \theta } \right)\cos \theta } \right)^2}$ ${\left( {{x^2} + {y^2} - x} \right)^2} = {\left( {1 + 2\cos \theta + {{\cos }^2}\theta - \cos \theta - {{\cos }^2}\theta } \right)^2}$ ${\left( {{x^2} + {y^2} - x} \right)^2} = {\left( {1 + \cos \theta } \right)^2}$ Since ${x^2} + {y^2} = {\left( {1 + \cos \theta } \right)^2}{\cos ^2}\theta + {\left( {1 + \cos \theta } \right)^2}{\sin ^2}\theta = {\left( {1 + \cos \theta } \right)^2}$, therefore ${\left( {{x^2} + {y^2} - x} \right)^2} = {x^2} + {y^2}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.