Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 12 - Parametric Equations, Polar Coordinates, and Conic Sections - 12.3 Polar Coordinates - Exercises - Page 618: 30

Answer

1. First find the points $A$ - $G$ in polar coordinates for $\theta = 0,\frac{\pi }{6},\frac{\pi }{3},...\pi $. 2. Then, plot the points $A$ - $G$ in polar coordinates and sketch the curve by joining them.

Work Step by Step

Using the method in Example 9, we obtain points $A$ - $G$ in polar coordinates for $\theta = 0,\frac{\pi }{6},\frac{\pi }{3},...\pi $ and list them on a table: $\begin{array}{*{20}{c}} {}\\ \theta \\ {r = 3\cos \theta - 1} \end{array}\begin{array}{*{20}{c}} A\\ 0\\ 2 \end{array}\begin{array}{*{20}{c}} B\\ {\frac{\pi }{6}}\\ {\frac{{3\sqrt 3 }}{2} - 1} \end{array}\begin{array}{*{20}{c}} C\\ {\frac{\pi }{3}}\\ {\frac{1}{2}} \end{array}\begin{array}{*{20}{c}} D\\ {\frac{\pi }{2}}\\ { - 1} \end{array}\begin{array}{*{20}{c}} E\\ {\frac{{2\pi }}{3}}\\ { - \frac{5}{2}} \end{array}\begin{array}{*{20}{c}} F\\ {\frac{{5\pi }}{6}}\\ { - \frac{{3\sqrt 3 }}{2} - 1} \end{array}\begin{array}{*{20}{c}} G\\ \pi \\ { - 4} \end{array}$ Then we plot the points $A$ - $G$ in polar coordinates and sketch the curve by joining them.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.