Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 12 - Parametric Equations, Polar Coordinates, and Conic Sections - 12.3 Polar Coordinates - Exercises - Page 618: 29

Answer

1. First, convert the polar coordinates to rectangular coordinates. 2. Then plot the points in rectangular coordinates and sketch the curve by connecting these points.

Work Step by Step

The rectangular coordinates of a point on the curve corresponding to $\theta$ is given by $\left( {x,y} \right) = \left( {r\cos \theta ,r\sin \theta } \right)$, $\left( {x,y} \right) = \frac{\theta }{2}\left( {\cos \theta ,\sin \theta } \right)$. For the interval $0 \le \theta \le 2\pi $, we evaluate several points in rectangular coordinates corresponding to $\theta = 0,\frac{\pi }{4},\frac{\pi }{2},...,2\pi $ and list them on the following table: $\begin{array}{*{20}{c}} \theta \\ 0\\ {\frac{\pi }{4}}\\ {\frac{\pi }{2}}\\ {\frac{{3\pi }}{4}}\\ \pi \\ {\frac{{5\pi }}{4}}\\ {\frac{{3\pi }}{2}}\\ {\frac{{7\pi }}{4}}\\ {2\pi } \end{array}\begin{array}{*{20}{c}} {\left( {x,y} \right)}\\ {\left( {0,0} \right)}\\ {\left( {\frac{\pi }{{16}}\sqrt 2 ,\frac{\pi }{{16}}\sqrt 2 } \right)}\\ {\left( {0,\frac{\pi }{4}} \right)}\\ {\left( { - \frac{{3\pi }}{{16}}\sqrt 2 ,\frac{{3\pi }}{{16}}\sqrt 2 } \right)}\\ {\left( { - \frac{\pi }{2},0} \right)}\\ {\left( { - \frac{{5\pi }}{{16}}\sqrt 2 , - \frac{{5\pi }}{{16}}\sqrt 2 } \right)}\\ {\left( {0, - \frac{{3\pi }}{4}} \right)}\\ {\left( {\frac{{7\pi }}{{16}}\sqrt 2 , - \frac{{7\pi }}{{16}}\sqrt 2 } \right)}\\ {\left( {\pi ,0} \right)} \end{array}$ Then we plot the points in rectangular coordinates and sketch the curve by connecting these points.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.