Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 12 - Parametric Equations, Polar Coordinates, and Conic Sections - 12.1 Parametric Equations - Exercises - Page 604: 73

Answer

The equation of the tangent line at $\theta =\frac{\pi }{3}$ is $y=-\sqrt{3} x+\frac{\sqrt{3}}{2}$.

Work Step by Step

Using Eq. (8) the slope of the tangent line is $\frac{dy}{dx}=\frac{y'(t)}{x'(t)}=-\frac{3 \sin ^2\theta \cos \theta }{3 \cos ^2\theta \sin \theta}=-\frac{\sin \theta}{\cos \theta}=-\tan \theta$. At $\theta =\frac{\pi }{3}$, the slope of the tangent line is $\frac{dy}{dx}|_{\theta =\frac{\pi }{3}}=-\sqrt{3}$. The corresponding point is $c(\frac{\pi}{3})=\left(\frac{1}{8},\frac{3 \sqrt{3}}{8}\right)$. So, the equation of the tangent line at $\theta =\frac{\pi }{3}$ is $y-\frac{3 \sqrt{3}}{8}=-\sqrt{3} \left(x-\frac{1}{8}\right)$. Or $y=-\sqrt{3} x+\frac{\sqrt{3}}{2}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.