Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 12 - Parametric Equations, Polar Coordinates, and Conic Sections - 12.1 Parametric Equations - Exercises - Page 604: 69

Answer

The Bézier curve is $c(t)=(3-9 t+24 t^2-16 t^3,2+6 t^2-4 t^3)$ for $0\leq t \leq 1$.

Work Step by Step

Since $P_0=\left(a_0,b_0\right)=(3,2)$, $P_1=\left(a_1,b_1\right)=(0,2)$, $P_2=\left(a_2,b_2\right)=(5,4)$, $P_3=\left(a_3,b_3\right)=(2,4)$. Substituting these values into Eq. (9) and Eq. (10) we obtain the parametric equations $x(t)=3-9 t+24 t^2-16 t^3$, $y(t)=2+6 t^2-4 t^3$. Thus, $c(t)=(3-9 t+24 t^2-16 t^3,2+6 t^2-4 t^3)$ for $0\leq t \leq 1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.