Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 12 - Parametric Equations, Polar Coordinates, and Conic Sections - 12.1 Parametric Equations - Exercises - Page 604: 65

Answer

The coordinates of $P$ is $(R \cos \theta,r \sin \theta)$ for $0\leq \theta\leq 2\pi$. The curve traced by $P$ is the ellipse $(x/R)^2+(y/r)^2=1$.

Work Step by Step

Let the origin be O. So, we have the vector position of OP as OP=OB+BP. From Figure 19, we get OB=$R \cos \theta \ \textbf{i}+R \sin \theta \ \textbf{j}$. BP=$-(R-r)\sin \theta \ \textbf{j}$ So, OP=OB+BP OP=$R \cos \theta \ \textbf{i}+R \sin \theta \ \textbf{j}-(R-r)\sin \theta \ \textbf{j}$ OP=$R \cos \theta \ \textbf{i}+R \sin \theta \ \textbf{j}-R \sin \theta \ \textbf{j}+r \sin \theta \ \textbf{j}$ OP=$R \cos \theta \ \textbf{i}+r \sin \theta \ \textbf{j}$. Thus, the coordinates of $P$ is $(R \cos \theta,r \sin \theta)$ for $0\leq \theta\leq 2\pi$. So we have the parametric equations $x=R \cos \theta$ and $y=r \sin \theta$. This is the parametrization of an ellipse (see Example 5) that satisfies the equation $(x/R)^2+(y/r)^2=1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.