Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 12 - Parametric Equations, Polar Coordinates, and Conic Sections - 12.1 Parametric Equations - Exercises - Page 604: 72

Answer

The points where the tangent line is horizontal are: $c(0)=(0,48)$, $c(\sqrt{6})=(2 \sqrt{6},12)$, $c(-\sqrt{6})=(-2 \sqrt{6},12)$. The points where the tangent line is vertical are: $c(\sqrt{4/3})=(-16/(3 \sqrt{3}),304/9)$, $c(-\sqrt{4/3})=(16/(3 \sqrt{3}),304/9)$.

Work Step by Step

Using Eq. (8) the slope of the tangent line is $\frac{dy}{dx}=\frac{y'(t)}{x'(t)}=\frac{4 t^3-24 t}{3 t^2-4}$. The tangent line is horizontal if $\frac{dy}{dx}=0$. So, we solve the equation $\frac{4 t^3-24 t}{3 t^2-4}=0$. $4t (t^2-6)=0$, $4t (t-\sqrt{6})(t+\sqrt{6})=0$. The solutions are $t=0$, $t=\sqrt{6}$ or $t=-\sqrt{6}$. The corresponding points where the tangent line is horizontal are: $c(0)=(0,48)$, $c(\sqrt{6})=(2 \sqrt{6},12)$, $c(-\sqrt{6})=(-2 \sqrt{6},12)$. The tangent line is vertical if $\frac{dy}{dx}$ is infinite. This occurs if $3t^2 - 4=0$. The solutions are $t=\sqrt{4/3}$ or $t=-\sqrt{4/3}$. The corresponding points where the tangent line is vertical are: $c(\sqrt{4/3})=(-16/(3 \sqrt{3}),304/9)$, $c(-\sqrt{4/3})=(16/(3 \sqrt{3}),304/9)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.