Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 7 - Applications of Integration - 7.3 Exercises - Page 462: 4

Answer

$V = 4\pi $

Work Step by Step

$$\eqalign{ & y = \frac{1}{2}{x^2} + 1 \cr & {\text{Applying the shell method about the }}y{\text{ - axis}} \cr & V = 2\pi \int_a^b {x\left[ {f\left( x \right) - g\left( x \right)} \right]} dx \cr & {\text{From the graph}} \cr & {\text{Let }}f\left( x \right) = 3{\text{ and }}g\left( x \right) = \frac{1}{2}{x^2} + 1{\text{ on the interval }}\left[ {0,2} \right],{\text{ then}} \cr & V = 2\pi \int_0^2 {x\left[ {3 - \left( {\frac{1}{2}{x^2} + 1} \right)} \right]} dx \cr & V = 2\pi \int_0^2 {x\left( {3 - \frac{1}{2}{x^2} - 1} \right)} dx \cr & V = 2\pi \int_0^2 {x\left( {2 - \frac{1}{2}{x^2}} \right)} dx \cr & V = 2\pi \int_0^2 {\left( {2x - \frac{1}{2}{x^3}} \right)} dx \cr & {\text{Integrating}} \cr & V = 2\pi \left[ {{x^2} - \frac{1}{8}{x^4}} \right]_0^2 \cr & V = 2\pi \left[ {{{\left( 2 \right)}^2} - \frac{1}{8}{{\left( 2 \right)}^4}} \right] - 2\pi \left[ {{{\left( 0 \right)}^2} - \frac{1}{8}{{\left( 0 \right)}^4}} \right] \cr & V = 2\pi \left[ 2 \right] - 2\pi \left[ 0 \right] \cr & V = 4\pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.