Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 7 - Applications of Integration - 7.3 Exercises - Page 462: 13

Answer

$V = \sqrt {2\pi } \left( {1 - \frac{1}{{\sqrt e }}} \right)$

Work Step by Step

$$\eqalign{ & y = \frac{1}{{\sqrt {2\pi } }}{e^{ - {x^2}/2}},{\text{ }}y = 0,{\text{ }}x = 0,{\text{ }}x = 1 \cr & {\text{Applying the shell method about the }}y{\text{ - axis}} \cr & V = 2\pi \int_a^b {x\left[ {f\left( x \right) - g\left( x \right)} \right]} dx \cr & {\text{From the graph}} \cr & {\text{Let }}f\left( x \right) = \frac{1}{{\sqrt {2\pi } }}{e^{ - {x^2}/2}}{\text{ and }}g\left( x \right) = 0{\text{ on the interval }}\left[ {0,1} \right],{\text{ then}} \cr & V = 2\pi \int_0^1 {x\left[ {\frac{1}{{\sqrt {2\pi } }}{e^{ - {x^2}/2}} - 0} \right]} dx \cr & V = \sqrt {2\pi } \int_0^1 {x{e^{ - {x^2}/2}}} dx \cr & V = \sqrt {2\pi } \int_0^1 {{e^{ - {x^2}/2}}} \left( { - x} \right)dx \cr & {\text{Integrating}} \cr & V = - \sqrt {2\pi } \left[ {{e^{ - {x^2}/2}}} \right]_0^1 \cr & V = - \sqrt {2\pi } \left[ {{e^{ - {{\left( 1 \right)}^2}/2}} - {e^{ - {{\left( 0 \right)}^2}/2}}} \right] \cr & {\text{Simplifying}} \cr & V = - \sqrt {2\pi } \left( {{e^{ - 1/2}} - 1} \right) \cr & V = \sqrt {2\pi } \left( {1 - {e^{ - 1/2}}} \right) \cr & V = \sqrt {2\pi } \left( {1 - \frac{1}{{\sqrt e }}} \right) \approx 0.986 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.