Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 7 - Applications of Integration - 7.3 Exercises - Page 462: 14

Answer

$V = 4\pi $

Work Step by Step

$$\eqalign{ & {\text{Let }}y = \frac{{\sin x}}{x}{\text{ for }}x > 0,{\text{ 1 for }}x = 0,{\text{ and }}y = 0,{\text{ }}x = 0,{\text{ }}x = \pi \cr & {\text{Use the shell method about the }}y{\text{ - axis}} \cr & V = 2\pi \int_a^b {x\left[ {f\left( x \right) - g\left( x \right)} \right]} dx \cr & {\text{From the graph}} \cr & {\text{Let }}f\left( x \right) = \frac{{\sin x}}{x}{\text{ and }}g\left( x \right) = 0{\text{ on the interval }}\left[ {0,\pi } \right],{\text{ then}} \cr & V = 2\pi \int_0^\pi {x\left( {\frac{{\sin x}}{x} - 0} \right)} dx \cr & V = 2\pi \int_0^\pi {\sin x} dx \cr & {\text{Integrating}} \cr & V = 2\pi \left[ { - \cos x} \right]_0^\pi \cr & V = 2\pi \left[ { - \cos \pi + \cos 0} \right] \cr & {\text{Simplifying}} \cr & V = 2\pi \left( {1 + 1} \right) \cr & V = 4\pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.