Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 7 - Applications of Integration - 7.3 Exercises - Page 462: 27

Answer

${\text{Shell method}}$

Work Step by Step

$$\eqalign{ & {\text{Let:}} \cr & {\left( {y - 2} \right)^2} = 4 - x \cr & {\text{Solve for }}x \cr & x = 4 - {\left( {y - 2} \right)^2} \cr & {\text{It is more convenient apply the shell method about the }}x{\text{ - axis}}{\text{, }} \cr & {\text{because: }} \cr & V = \int_c^d {2\pi y\left( {p\left( y \right) - q\left( y \right)} \right)} dy \cr & {\text{The functions are }}p\left( y \right) = 4 - {\left( {y - 2} \right)^2}{\text{ and }}q\left( y \right) = 0 \cr & {\text{on the other hand using the disk method}}{\text{, we need to solve the}} \cr & {\text{given equation for }}y{\text{ and we obtain}} \cr & y = \pm \sqrt {4 - x} + 2{\text{ and applying the disk method the integrand}} \cr & {\text{is more complicated}}{\text{. Then}}{\text{,}} \cr & V = \int_c^d {2\pi y\left( {p\left( y \right) - q\left( y \right)} \right)} dy \cr & V = \int_0^4 {2\pi y\left[ {4 - {{\left( {y - 2} \right)}^2} - 0} \right]} dy \cr & V = 2\pi \int_0^4 {y\left[ {4 - {{\left( {y - 2} \right)}^2}} \right]} dy \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.