Answer
$1.935$
Work Step by Step
$$\eqalign{
& f\left( x \right) = 1 - x + \sin x \cr
& {\text{Differentiating}} \cr
& f'\left( x \right) = - 1 + \cos x \cr
& {\text{Using the Newton's Method}} \cr
& {\text{The iterative formula is}} \cr
& {x_{n + 1}} = {x_n} - \frac{{f\left( {{x_n}} \right)}}{{f'\left( {{x_n}} \right)}}{\text{ }}\left( {\bf{1}} \right) \cr
& {\text{Substituting }}f\left( {{x_n}} \right){\text{ and }}f\left( {{x_n}} \right){\text{ into }}\left( {\bf{1}} \right) \cr
& {x_{n + 1}} = {x_n} - \frac{{1 - {x_n} + \sin {x_n}}}{{ - 1 + \cos {x_n}}} \cr
& {\text{From the graph we can see that the first possible initial }} \cr
& {\text{approximation is }}{x_1} \approx 2 \cr
& {\text{The calculations for the iterations are shown below}} \cr
& {x_1} \approx 2 \cr
& {x_2} = 2 - \frac{{1 - 2 + \sin 2}}{{ - 1 + \cos 2}} \cr
& {x_2} \approx 1.9360 \cr
& {\text{Continuing the iterations we obtain}} \cr
& {x_3} \approx 1.9351 \cr
& {x_4} \approx 1.9351 \cr
& {\text{The successive approximations }}{x_5}{\text{ and }}{x_4}{\text{ differ by}} \cr
& \left| {{x_4} - {x_3}} \right| \approx 0 < 0.001 \cr
& {\text{We can estimate the first zero of }}f\left( x \right){\text{ to be }} \cr
& x \approx 1.9350 \cr
& {\text{Taking three decimal plases}} \cr
& x \approx 1.935 \cr
& {\text{Using a graphing utility we obtain}} \cr
& x \approx 1.934563211 \cr} $$