Answer
$$\eqalign{
& - 1.3803 \cr
& 0.8192 \cr} $$
Work Step by Step
$$\eqalign{
& f\left( x \right) = {x^4} + {x^3} - 1 \cr
& {\text{Differentiating}} \cr
& f'\left( x \right) = 4{x^3} + 3{x^2} \cr
& {\text{Using the Newton's Method}} \cr
& {\text{The iterative formula is}} \cr
& {x_{n + 1}} = {x_n} - \frac{{f\left( {{x_n}} \right)}}{{f'\left( {{x_n}} \right)}}{\text{ }}\left( {\bf{1}} \right) \cr
& {\text{Substituting }}f\left( {{x_n}} \right){\text{ and }}f\left( {{x_n}} \right){\text{ into }}\left( {\bf{1}} \right) \cr
& {x_{n + 1}} = {x_n} - \frac{{x_n^4 + x_n^3 - 1}}{{4x_n^3 + 3x_n^2}} \cr
& {\text{From the graph we can see that the first possible initial }} \cr
& {\text{approximation is }}{x_1} = - 1.5 \cr
& {\text{The calculations for the iterations are shown below}} \cr
& {x_1} = - 1.5 \cr
& {x_2} = - 1.398 \cr
& {\text{Continuing the iterations we obtain}} \cr
& {x_3} \approx - 1.3807 \cr
& {x_4} \approx - 1.3803 \cr
& {x_5} \approx - 1.3803 \cr
& {\text{The successive approximations }}{x_5}{\text{ and }}{x_4}{\text{ differ by}} \cr
& \left| {{x_5} - {x_4}} \right| \approx 0 < 0.001 \cr
& {\text{We can estimate the first zero of }}f\left( x \right){\text{ to be }} \cr
& x \approx - 1.3803 \cr
& {\text{Using a graphing utility we obtain}} \cr
& x \approx - 1.380277 \cr
& \cr
& {\text{From the graph we can see that the second possible initial }} \cr
& {\text{approximation is }}{x_1} \approx 0.7 \cr
& {\text{The calculations for the iterations are shown below}} \cr
& {x_1} \approx 0.7 \cr
& {x_2} \approx 0.8467 \cr
& {\text{Continuing the iterations we obtain}} \cr
& {x_3} \approx 0.8203 \cr
& {x_4} \approx 0.8192 \cr
& {x_5} \approx 0.8192 \cr
& {\text{The successive approximations }}{x_5}{\text{ and }}{x_4}{\text{ differ by}} \cr
& \left| {{x_4} - {x_5}} \right| \approx 0 < 0.001 \cr
& {\text{We can estimate the second zero of }}f\left( x \right){\text{ to be }} \cr
& x \approx 0.8192 \cr
& {\text{Using a graphing utility we obtain}} \cr
& x = 0.8191725134 \cr
& {\text{The solutions are:}} \cr
& x = - 1.3803{\text{ and }}x = 0.8192 \cr} $$