Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.7 Exercises - Page 220: 6

Answer

$x = 1{\text{ and }}y = 1$

Work Step by Step

$$\eqalign{ & {\text{Let }}x{\text{ and }}y{\text{ the numbers}}{\text{,}} \cr & \left( {{\text{The second number is reciprocal to the first number}}} \right),{\text{ then}} \cr & {\text{We have that:}} \cr & y = \frac{1}{x}{\text{ }}\left( {\bf{1}} \right) \cr & {\text{The sum of the numbers is a minimum }} \cr & S = x + y{\text{ }}\left( {\bf{2}} \right) \cr & {\text{Substitute }}\frac{1}{x}{\text{ into the equation }}\left( {\bf{2}} \right) \cr & S = x + \frac{1}{x} \cr & {\text{Differentiate}} \cr & \frac{{dS}}{{dx}} = 1 - \frac{1}{{{x^2}}} \cr & {\text{Find the critical points by solving }}\frac{{dS}}{{dx}} = 0 \cr & 1 - \frac{1}{{{x^2}}} = 0 \cr & {x^2} = 1 \cr & x = \pm 1 \cr & {\text{Calculate the second derivative}} \cr & \frac{{{d^2}S}}{{d{x^2}}} = \frac{2}{{{x^3}}} \cr & {\text{By the second derivative test:}} \cr & {\left. {\frac{{{d^2}S}}{{d{x^2}}}} \right|_{x = - 1}} = \frac{2}{{{{\left( { - 1} \right)}^3}}} = - 2 < 0{\text{ Relative maximum}} \cr & {\left. {\frac{{{d^2}S}}{{d{x^2}}}} \right|_{x = 1}} = \frac{2}{{{{\left( 1 \right)}^3}}} = 2 > 0{\text{ Relative minimum}} \cr & {\text{Taking }}x = 1{\text{ }}\left( {{\text{Because the sum is minimum}}} \right) \cr & y = \frac{1}{x} \to y = \frac{1}{1} = 1 \cr & {\text{Therefore}}{\text{, the numbers are: }}x = 1{\text{ and }}y = 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.