Answer
$${\text{The dimensions are: }}\left( {2 + \sqrt {30} } \right){\text{ by }}\left( {2 + \sqrt {30} } \right)$$
Work Step by Step
$$\eqalign{
& {\text{From the image shown below:}} \cr
& {\text{Let }}A{\text{ be the area to be minimized }} \cr
& A = \left( {y + 2} \right)\left( {x + 2} \right){\text{ }}\left( {\bf{1}} \right) \cr
& {\text{We know that the printed area inside the margin is }} \cr
& xy = 30 \cr
& {\text{Solving the previous equation for }}y \cr
& y = \frac{{30}}{x} \cr
& {\text{Substitute }}\frac{{30}}{x}{\text{ for }}y{\text{ in the equation }}\left( {\bf{1}} \right) \cr
& A = \left( {\frac{{30}}{x} + 2} \right)\left( {x + 2} \right),{\text{ The domain is }}x > 0 \cr
& A = 30 + \frac{{60}}{x} + 2x + 4 \cr
& A = 34 + \frac{{60}}{x} + 2x \cr
& {\text{Differentiate}} \cr
& \frac{{dA}}{{dx}} = - \frac{{60}}{{{x^2}}} + 2 \cr
& {\text{Let }}\frac{{dA}}{{dx}} = 0,{\text{ then}} \cr
& - \frac{{60}}{{{x^2}}} + 2 = 0 \cr
& \frac{{60}}{{{x^2}}} = 2 \cr
& {x^2} = 30 \cr
& x = \sqrt {30} \cr
& {\text{Calculate the second derivative}} \cr
& \frac{{{d^2}A}}{{d{x^2}}} = \frac{d}{{dx}}\left[ { - \frac{{60}}{{{x^2}}} + 2} \right] \cr
& \frac{{{d^2}A}}{{d{x^2}}} = \frac{{120}}{{{x^3}}} \cr
& {\text{By the second derivative test:}} \cr
& {\left. {\frac{{{d^2}A}}{{d{x^2}}}} \right|_{x = \sqrt {30} }} = \frac{{120}}{{{{\left( {\sqrt 3 } \right)}^3}}} > 0{\text{ Relative minimum}} \cr
& {\text{Calculate }}y \cr
& y = \frac{{30}}{x} \to y = \frac{{30}}{{\sqrt {30} }} = 10\sqrt 3 \cr
& x = \sqrt {30} {\text{ and }}y = \sqrt {30} \cr
& {\text{Therefore, the dimensions are:}} \cr
& x + 2 = {\text{2 + }}\sqrt {30} \cr
& y + 2 = {\text{2 + }}\sqrt {30} \cr} $$