Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.7 Exercises - Page 220: 14

Answer

$$\left( { - 1,4} \right)$$

Work Step by Step

$$\eqalign{ & {\text{Let the function be }}f\left( x \right) = {\left( {x - 1} \right)^2} \cr & y = {\left( {x - 1} \right)^2}{\text{ }}\left( {\bf{1}} \right) \cr & {\text{The distance between two points }}\left( {{x_1},{y_1}} \right){\text{ and }}\left( {{x_2},{y_2}} \right){\text{ is given}} \cr & {\text{by : }}d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \cr & {\text{We know the point }}\left( {{x_1},{y_1}} \right) = \left( { - 5,3} \right),{\text{ and }}\left( {x,y} \right) = \left( {{x_2},{y_2}} \right) \cr & d = \sqrt {{{\left( {x + 5} \right)}^2} + {{\left( {y - 3} \right)}^2}} {\text{ }}\left( {\bf{2}} \right) \cr & {\text{Substitute }}{\left( {x - 1} \right)^2}{\text{ for }}y{\text{ into equation }}\left( {\bf{2}} \right) \cr & d = \sqrt {{{\left( {x + 5} \right)}^2} + {{\left( {{{\left( {x - 1} \right)}^2} - 3} \right)}^2}} \cr & d = \sqrt {{x^2} + 10x + 25 + {{\left( {{x^2} - 2x + 1 - 3} \right)}^2}} \cr & d = \sqrt {{x^2} + 10x + 25 + {{\left( {{x^2} - 2x - 2} \right)}^2}} \cr & d = \sqrt {{x^2} + 10x + 25 + {x^4} - 4{x^3} + 8x + 4} \cr & d = \sqrt {{x^4} - 4{x^3} + {x^2} + 18x + 29} \cr & {\text{If the radicand is the smallest, then }}d{\text{ is the smallest, so we need the}} \cr & {\text{minimum value of the radicand to be }}r\left( x \right) = {x^4} - 4{x^3} + {x^2} + 18x + 29 \cr & {\text{Differentiate}} \cr & \frac{{dr}}{{dx}} = \frac{d}{{dx}}\left[ {{x^4} - 4{x^3} + {x^2} + 18x + 29} \right] \cr & \frac{{dr}}{{dx}} = 4{x^3} - 12{x^2} + 2x + 18 \cr & \frac{{dr}}{{dx}} = 0 \cr & 4{x^3} - 12{x^2} + 2x + 18 = 0 \cr & {\text{Factoring}} \cr & 2\left( {2{x^3} - 6{x^2} + x + 9} \right) = 0 \cr & 2\left( {x + 1} \right)\underbrace {\left( {2{x^2} - 8x + 9} \right)}_{{\text{No real solutions}}} = 0 \cr & x = - 1 \cr & {\text{Calculate the second derivative}} \cr & \frac{{{d^2}r}}{{d{x^2}}} = \frac{d}{{dx}}\left[ {4{x^3} - 12{x^2} + 2x + 18} \right] \cr & \frac{{{d^2}r}}{{d{x^2}}} = 12{x^2} - 24x + 2 \cr & {\text{By the second derivative test:}} \cr & {\left. {\frac{{{d^2}r}}{{d{x^2}}}} \right|_{x = 1}} = 12{\left( { - 1} \right)^2} - 24\left( { - 1} \right) + 2 = 38 > 0{\text{ Relative minimum}} \cr & {\text{Let }}x = - 1 \cr & {\text{Calculate }}y \cr & y = {\left( {x - 1} \right)^2} \to y = {\left( { - 1 - 1} \right)^2} = 4 \cr & {\text{The point }}\left( {x,y} \right){\text{ nearest to }}\left( { - 5,3} \right){\text{ is }}\left( {x,y} \right) = \left( { - 1,4} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.