Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.7 Exercises - Page 220: 10

Answer

$${\text{Width}} = {\text{length}} = \frac{1}{4}P{\text{ units}}$$

Work Step by Step

$$\eqalign{ & {\text{From the image shown below we know that the perimeter is}} \cr & {\text{given by the equation}} \cr & 2x + 2y = P{\text{ }}\left( {\bf{1}} \right) \cr & A = xy{\text{ }}\left( {\bf{2}} \right) \cr & {\text{Solve equation }}\left( {\bf{1}} \right){\text{ for }}y \cr & 2y = P - 2x \cr & {\text{ }}y = \frac{1}{2}P - x \cr & {\text{Substitute }}\frac{1}{2}P - x{\text{ into equation }}\left( {\bf{2}} \right) \cr & A = x\left( {\frac{1}{2}P - x} \right) \cr & \frac{{dA}}{{dx}} = \frac{1}{2}Px - {x^2} \cr & {\text{Differentiate}} \cr & \frac{{dA}}{{dx}} = \frac{1}{2}P - 2x \cr & {\text{Find the critical points by solving }}\frac{{dA}}{{dx}} = 0 \cr & \frac{1}{2}P - 2x = 0 \cr & x = \frac{1}{4}P \cr & {\text{Calculate the second derivative}} \cr & \frac{{{d^2}A}}{{d{x^2}}} = - 2 \cr & {\text{By the second derivative test:}} \cr & {\left. {\frac{{{d^2}A}}{{d{x^2}}}} \right|_{x = 20}} = - 2 < 0{\text{ Relative maximum}} \cr & {\text{Taking }}x = \frac{1}{4}P \cr & {\text{ }}y = \frac{1}{2}P - x \to y = \frac{1}{2}P - \frac{1}{4}P = \frac{1}{4}P \cr & {\text{Therefore, the numbers are: }}x = \frac{1}{4}P{\text{ and }}y = \frac{1}{4}P \cr & {\text{The dimensions are Width}} = {\text{length}} = \frac{1}{4}P{\text{ units}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.