Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.6 Exercises - Page 212: 29

Answer

$$\eqalign{ & {\text{Domain}}:\left[ {0,2\pi } \right] \cr } $$

Work Step by Step

$$\eqalign{ & f\left( x \right) = 2x - 4\sin x,{\text{ }}0 \leqslant x \leqslant 2\pi \cr & {\text{The domain of the function is }}D:\left[ {0,2\pi } \right] \cr & \cr & {\text{*Differentiating }} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {2x - 4\sin x} \right] \cr & f'\left( x \right) = 2 - 4\cos x \cr & {\text{Set }}f'\left( x \right) = 0 \cr & 2 - 4\cos x = 0 \cr & \cos x = \frac{1}{2} \cr & {\text{On the interval }}\left[ {0,2\pi } \right]{\text{ }}\cos x = \frac{1}{2}{\text{ at: }}x = \frac{\pi }{3},{\text{ }}x = \frac{{5\pi }}{3} \cr & \cr & {\text{*Find the second derivative}} \cr & f''\left( x \right) = \frac{d}{{dx}}\left[ {2 - 4\cos x} \right] \cr & f''\left( x \right) = 4\sin x \cr & {\text{Evaluate }}f''\left( x \right){\text{ at the critical points }}x = \frac{\pi }{3},{\text{ }}x = \frac{{5\pi }}{3} \cr & f''\left( {\frac{\pi }{3}} \right) = 2\sqrt 3 > 0,{\text{ relative minimum}} \cr & f\left( {\frac{\pi }{3}} \right) = \frac{{2\pi }}{3} - 2\sqrt 3 \to {\text{Relative minimum at }}\left( {\frac{\pi }{3},\frac{{2\pi }}{3} - 2\sqrt 3 } \right) \cr & f''\left( {\frac{{5\pi }}{3}} \right) = - 2\sqrt 3 < 0,{\text{ relative maximum}} \cr & f\left( {\frac{{5\pi }}{3}} \right) = \frac{{10\pi }}{3} + 2\sqrt 3 {\text{,Relative maximum at }}\left( {\frac{{5\pi }}{3},\frac{{10\pi }}{3} + 2\sqrt 3 } \right) \cr & \cr & {\text{Set }}f''\left( x \right) = 0 \cr & 4\sin x = 0 \cr & \sin x = 0 \cr & {\text{On the interval }}\left[ {0,2\pi } \right]{\text{ }}\sin x = 0{\text{ at: }}x = 0,{\text{ }}x = \pi ,{\text{ }}x = 2\pi \cr & f\left( 0 \right) = 0 \cr & f\left( \pi \right) = 2\pi \cr & f\left( {2\pi } \right) = 4\pi \cr & {\text{The inflection points are:}} \cr & \left( {0,0} \right),\left( {\pi ,2\pi } \right),\left( {2\pi ,4\pi } \right) \cr & \cr & {\text{*There are no vertical asymptotes because the denominator}} \cr & {\text{is never 0}}{\text{.}} \cr & *{\text{There are no horizontal asymptotes}} \cr & \cr &} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.