Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.6 Exercises - Page 212: 19

Answer

Graph

Work Step by Step

$$\eqalign{ & y = 2 - x - {x^3} \cr & {\text{Find the }}y{\text{ intercept, let }}x = 0 \cr & y = 2 - \left( 0 \right) - {\left( 0 \right)^3} \cr & y = 2 \cr & y{\text{ - intercept }}\left( {0,2} \right) \cr & {\text{Find the }}x{\text{ intercept, let }}y = 0 \cr & 0 = 2 - x - {x^3} \cr & {\text{Solving by a calculator}} \cr & x = 1 \cr & x{\text{ - intercept }}\left( {1,0} \right) \cr & \cr & *{\text{Find the extrema}} \cr & {\text{Differentiate}} \cr & y' = \frac{d}{{dx}}\left[ {2 - x - {x^3}} \right] \cr & y' = - 1 - 3{x^2} \cr & {\text{Let }}y' = 0{\text{ to find critical points}} \cr & - 1 - 3{x^2} = 0 \cr & 3{x^2} + 1 = 0 \cr & {\text{No real solutions, there are no extrema}}{\text{.}} \cr & \cr & *{\text{Find the second derivative}} \cr & y'' = \frac{d}{{dx}}\left[ { - 1 - 3{x^2}} \right] \cr & y'' = - 6x \cr & {\text{Let }}y''\left( x \right) = 0 \cr & - 6x = 0 \cr & x = 0 \cr & {\text{Inflection point }}\left( {0,f\left( 0 \right)} \right) \cr & y = 2 - \left( 0 \right) - {\left( 0 \right)^3} = 2 \cr & {\text{Inflection point}} \to \left( {0,2} \right) \cr & \cr & {\text{*Calculate the asymptotes}} \cr & {\text{No vertical asymptotes, the denominator is 1}}{\text{.}} \cr & \mathop {\lim }\limits_{x \to \infty } \left( {2 - x - {x^3}} \right) = - \infty \cr & \mathop {\lim }\limits_{x \to - \infty } \left( {2 - x - {x^3}} \right) = + \infty \cr & {\text{No horizontal asymptotes}} \cr & \cr & {\text{Graph}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.