Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.6 Exercises - Page 212: 25

Answer

$$\eqalign{ & {\text{Domain }}\left( { - \infty ,0} \right) \cup \left( {0,\infty } \right) \cr & {\text{Relative maximum }}\left( {1.0962,9.0457} \right) \cr & {\text{Relative minimum }}\left( { - 1.0962, - 9.0457} \right) \cr & {\text{No Inflection points}} \cr & {\text{Vertical Asymptote }}x = 0 \cr & {\text{Horizontal Asymptote }}y = 0 \cr} $$

Work Step by Step

$$\eqalign{ & f\left( x \right) = \frac{{20x}}{{{x^2} + 1}} - \frac{1}{x} \cr & {\text{Using a CAS }}\left( {{\text{WolframAlpha Website}}} \right){\text{ we obtain:}} \cr & {\text{Domain: }}\left\{ {\left. {x \in R} \right|x \ne 0} \right\} \cr & {\text{Odd Function }}\left( {{\text{Symmetry with respect to origin}}} \right) \cr & {\text{Max at }}x = \sqrt {\frac{1}{{19}}\left( {11 + 2\sqrt {35} } \right)} \cr & {\text{Min at }}x = - \sqrt {\frac{1}{{19}}\left( {11 + 2\sqrt {35} } \right)} \cr & {\text{Inflection points at:}} \cr & x = - \sqrt {\frac{{11}}{{19}} + \frac{{2\sqrt {35} }}{{19}}} \cr & x = \sqrt {\frac{{11}}{{19}} + \frac{{2\sqrt {35} }}{{19}}} \cr & {\text{Vertical Asymptote }}x = 0 \cr & {\text{Horizontal Asymptote }}y = 0 \cr & \cr & {\text{Graph}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.