Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.6 Exercises - Page 212: 24

Answer

Graph

Work Step by Step

$$\eqalign{ & y = {\left( {x - 1} \right)^5} \cr & {\text{Domain: }}\left( { - \infty ,\infty } \right) \cr & {\text{Find the }}y{\text{ intercept, let }}x = 0 \cr & y = {\left( {0 - 1} \right)^5} \cr & y = - 1 \cr & y{\text{ - intercept }}\left( {0, - 1} \right) \cr & {\text{Find the }}x{\text{ intercept, let }}y = 0 \cr & {\left( {x - 1} \right)^5} = 0 \cr & x = 1 \cr & x{\text{ - intercept }}\left( {1,0} \right) \cr & \cr & *{\text{Find the extrema}} \cr & {\text{Differentiate}} \cr & y' = \frac{d}{{dx}}\left[ {{{\left( {x - 1} \right)}^5}} \right] \cr & y' = 5{\left( {x - 1} \right)^4} \cr & {\text{Let }}y' = 0{\text{ to find critical points}} \cr & 5{\left( {x - 1} \right)^4} = 0 \cr & x = 1 \cr & *{\text{Find the second derivative}} \cr & y'' = \frac{d}{{dx}}\left[ {5{{\left( {x - 1} \right)}^4}} \right] \cr & y'' = 20{\left( {x - 1} \right)^3} \cr & {\text{Evaluate }}y''\left( x \right){\text{ at }}x = 1 \cr & y''\left( 1 \right) = 20{\left( {1 - 1} \right)^3} = 0 \cr & {\text{Use the first derivative test}} \cr & y'\left( 0 \right) = + ,{\text{ }}y'\left( 2 \right) = + ,{\text{ The derivative does not change}} \cr & {\text{no relative extrema at }}x = 1 \cr & {\text{Let }}y''\left( x \right) = 0 \cr & 20{\left( {x - 1} \right)^3} = 0 \cr & x = 1 \cr & \cr & {\text{*Calculate the asymptotes}} \cr & {\text{No vertical asymptotes, the denominator is 1}}{\text{.}} \cr & \mathop {\lim }\limits_{x \to \infty } {\left( {x - 1} \right)^5} = \infty \cr & \mathop {\lim }\limits_{x \to - \infty } {\left( {x - 1} \right)^5} = - \infty \cr & {\text{No horizontal asymptotes}} \cr & \cr & {\text{Graph}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.