Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 2 - Differentiation - 2.4 Exercises - Page 136: 41

Answer

(a) Slope=$1$; Number of Cycles=Slope=$1$ ;Slope$=a=1.$ (b) Slope=$2$; Number of Cycles=Slope=$2$; Slope$=a=2.$

Work Step by Step

(a) $\dfrac{d}{dx}\sin{x}=\cos{x}\rightarrow cos(0)=1\rightarrow$ Slope of the tangent line is 1. Complete Cycle consists of two humps so graph (a) has one complete cycle. $\sin{x}=\sin{1x}\rightarrow a=1$. Slope=1; Number of Cycles=Slope=1 ;Slope=a=1. (b) Using the Chain Rule: $\dfrac{d}{dx}\sin{2x}=\dfrac{d}{dx}2x\times \cos{2x}=2\cos{2x}$. $2\cos{0}=2\rightarrow$ The slope of the tangent is $2$. Complete Cycle consists of two humps so graph (b) has two complete cycles. $\sin{2x}\rightarrow a=2$. (b) Slope=2; Number of Cycles=Slope=2; Slope=a=2.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.