Answer
$\frac{dV}{dt}=\frac{3\pi}{4}\sqrt t+\frac{\pi}{2\sqrt t}$
Work Step by Step
$V=\pi r^2h$
$V=\pi (\sqrt{t+2})^2(\frac{1}{2}\sqrt t)$
$V=(t+2)(\frac{\pi}{2}\sqrt t)$
$V=\frac{\pi}{2}t^{\frac{3}{2}}+\pi t^{\frac{1}{2}}$
$\frac{dV}{dt}=(\frac{3}{2})\frac{\pi}{2}t^{\frac{1}{2}}+(\frac{1}{2})\pi t^{-\frac{1}{2}}$
$\frac{dV}{dt}=\frac{3\pi}{4}\sqrt t+\frac{\pi}{2\sqrt t}$