Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 2 - Differentiation - 2.3 Exercises - Page 126: 77

Answer

$$\eqalign{ & y = - \frac{1}{2}x + \frac{7}{2} \cr & y = - \frac{1}{2}x - \frac{1}{2} \cr} $$

Work Step by Step

$$\eqalign{ & {\text{Let }}f\left( x \right) = \frac{{x + 1}}{{x - 1}} \cr & {\text{Find }}f'\left( x \right) \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {\frac{{x + 1}}{{x - 1}}} \right] \cr & {\text{By the quotient rule}} \cr & f'\left( x \right) = \frac{{\left( {x - 1} \right)\left( 1 \right) - \left( {x + 1} \right)\left( 1 \right)}}{{{{\left( {x - 1} \right)}^2}}} \cr & f'\left( x \right) = \frac{{x - 1 - x - 1}}{{{{\left( {x - 1} \right)}^2}}} \cr & f'\left( x \right) = - \frac{2}{{{{\left( {x - 1} \right)}^2}}} \cr & 2y + x = 6 \to m = - \frac{1}{2} \cr & {\text{Find the point }}x{\text{ at which the slope is }}m = - \frac{1}{2} \cr & - \frac{2}{{{{\left( {x - 1} \right)}^2}}} = - \frac{1}{2} \cr & \frac{{{{\left( {x - 1} \right)}^2}}}{2} = 2 \cr & {\left( {x - 1} \right)^2} = 4 \cr & x - 1 = \pm 2 \cr & {x_1} = - 1,{\text{ }}{x_2} = 3 \cr & f\left( { - 1} \right) = 0,{\text{ }}f\left( 3 \right) = \frac{{3 + 1}}{{3 - 1}} = 2 \cr & {\text{We obtain the points }}\left( { - 1,0} \right){\text{ and }}\left( {3,2} \right) \cr & {\text{For }}\left( { - 1,0} \right) \cr & y - {y_1} = m\left( {x - {x_1}} \right) \cr & y - 0 = - \frac{1}{2}\left( {x + 1} \right) \to y = - \frac{1}{2}x - \frac{1}{2} \cr & {\text{For }}\left( {3,2} \right) \cr & y - {y_1} = m\left( {x - {x_1}} \right) \cr & y - 2 = - \frac{1}{2}\left( {x - 3} \right) \to y = - \frac{1}{2}x + \frac{7}{2} \cr & {\text{Graph}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.