Answer
One horizontal tangent at the point $(0,0)$.
Work Step by Step
Using the quotient rule: $fâ(x)=(\frac{u(x)}{v(x)})'=\frac{u'(x)v(x)-v'(x)u(x)}{(v(x))^2}$
$u(x)=x^2; u'(x)=2x$
$v(x)=x^2+1; v'(x)=2x$
$f'(x)=\frac{(2x)(x^2+1)-(2x)(x^2)}{(x^2+1)^2}=\frac{2x}{(x^2+1)^2}$
$f'(x)=0 \rightarrow 2x=0 \rightarrow x=0$
$f(0)=\frac{0^2}{0^2+1}=0$
The point is $(0, 0).$